ﻻ يوجد ملخص باللغة العربية
We present a study of the magnetic susceptibility $chi_{mol}$ under variable hydrostatic pressure on single crystals of Cs$_2$CuCl$_{4-x}$Br$_x$. This includes the border compounds textit{x} = 0 and 4, known as good realizations of the distorted triangular-lattice spin-1/2 Heisenberg antiferromagnet, as well as the isostructural stoichiometric systems Cs$_2$CuCl$_{3}$Br$_1$ and Cs$_2$CuCl$_{2}$Br$_2$. For the determination of the exchange coupling constants $J$ and $J^{prime}$, $chi_{mol}$ data were fitted by a $J-J^{prime}$ model cite{Schmidt2015}. Its application, validated for the border compounds, yields a degree of frustration $J^{prime}$/$J$ = 0.47 for Cs$_2$CuCl$_3$Br$_1$ and $J^{prime}$/$J$ $simeq$ 0.63 - 0.78 for Cs$_2$CuCl$_2$Br$_2$, making these systems particular interesting representatives of this family. From the evolution of the magnetic susceptibility under pressure up to about 0.4,GPa, the maximum pressure applied, two observations were made for all the compounds investigated here. First, we find that the overall energy scale, given by $J_c = (J^2$ + $J^{prime 2}$)$^{1/2}$, increases under pressure, whereas the ratio $J^{prime}$/$J$ remains unchanged in this pressure range. These experimental observations are in accordance with the results of DFT calculations performed for these materials. Secondly, for the magnetoelastic coupling constants, extraordinarily small values are obtained. We assign these observations to a structural peculiarity of this class of materials.
The quantum-spin S = 1=2 chain system Cs$_2$CuCl$_4$ is of high interest due to competing anti-ferromagnetic intra-chain J and inter-chain exchange J interactions and represents a paramount example for Bose-Einstein condensation of magnons [R. Coldea
We report an experimental and theoretical study of the low-temperature specific heat $C$ and magnetic susceptibility $chi$ of the layered anisotropic triangular-lattice spin-1/2 Heisenberg antiferromagnets Cs$_2$CuCl$_{4-x}$Br$_x$ with $x$ = 0, 1, 2,
We report on a systematic study of the magnetic properties on single crystals of the solid solution Cs$_2$CuCl$_{4-x}$Br$_x$ (0 $leq$ x $leq$ 4), which include the two known end-member compounds Cs$_2$CuCl$_4$ and Cs$_2$CuBr$_4$, classified as quasi-
Powder X-ray diffraction (PXRD) and single-crystal neutron scattering were used to study in detail the structural properties of the Cs2CuCl(4-x)Br(x) series, good realizations of layered triangular antiferromagnets. Detailed temperature-dependent PXR
The magnetism in the saw-tooth lattice of Mn in the olivine chalcogenides, Mn$_2$SiS$_{4-x}$Se$_x$ ($x$ = 1$textendash$4) is studied in detail by analyzing their magnetization, specific heat and thermal conductivity properties and complemented with d