ﻻ يوجد ملخص باللغة العربية
This paper is devoted to an extension of rigidity results for nonlinear differential equations, based on carr{e} du champ methods, in the one-dimensional periodic case. The main result is an interpolation inequality with non-trivial explicit estimates of the constants in W1,p(S1) with p $ge$ 2. Mostly for numerical reasons, we relate our estimates with issues concerning periodic dynamical systems. Our interpolation inequalities have a dual formulation in terms of generalized spectral estimates of Keller-Lieb-Thirring type, where the differential operator is now a p-Laplacian type operator. It is remarkable that the carr{e} du champ method adapts to such a nonlinear framework, but significant changes have to be done and, for instance, the underlying parabolic equation has a nonlocal term whenever p$ e$2.
In this paper we prove refined first-order interpolation inequalities for periodic functions and give applications to various refinements of the Carlson--Landau-type inequalities and to magnetic Schrodinger operators. We also obtain Lieb-Thirring ine
We consider interpolation inequalities for imbeddings of the $l^2$-sequence spaces over $d$-dimensional lattices into the $l^infty_0$ spaces written as interpolation inequality between the $l^2$-norm of a sequence and its difference. A general method
For a bounded convex domain Omega in R^N we prove refined Hardy inequalities that involve the Hardy potential corresponding to the distance to the boundary of Omega, the volume of $Omega$, as well as a finite number of sharp logarithmic corrections.
We prove an equivalence between weighted Poincare inequalities and the existence of weak solutions to a Neumann problem related to a degenerate p- Laplacian. The Poincare inequalities are formulated in the context of degenerate Sobolev spaces defined
We consider a general class of sharp $L^p$ Hardy inequalities in $R^N$ involving distance from a surface of general codimension $1leq kleq N$. We show that we can succesively improve them by adding to the right hand side a lower order term with optim