ترغب بنشر مسار تعليمي؟ اضغط هنا

A channel for very high density matter-antimatter pair-jet production by intense laser-pulses

181   0   0.0 ( 0 )
 نشر من قبل Dario Del Sorbo
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The mechanism of laser-driven relativistic pair-jet production qualitatively changes as laser intensity exceeds $Igtrsim5times10^{22}$ W/cm$^{2}$ because of the appearance of laser-induced strong-field QED processes. Here, we show that by exceeding this intensity additional physics operates and opens a new and efficient channel to convert laser photons into dense pair-jets -- the combination of nonlinear Compton scattering and the Bethe-Heitler process. This channel generates relativistic electron-positron jets more than three orders of magnitude denser than has so far been possible. We find that the process is so efficient that it leads to the prolific production of heavier pairs as well. The jets produced by this new channel will enable the study of collective processes in relativistic electron-positron plasmas.



قيم البحث

اقرأ أيضاً

A method of generating spin polarized proton beams from a gas jet by using a multi-petawatt laser is put forward. With currently available techniques of producing pre-polarized monatomic gases from photodissociated hydrogen halide molecules and petaw att lasers, proton beams with energy ~ 50 MeV and ~ 80 % polarization are proved to be obtained. Two-stage acceleration and spin dynamics of protons are investigated theoretically and by means of fully self-consistent three dimensional particle-in-cell simulations. Our results predict the dependence of the beam polarization on the intensity of the driving laser pulse. Generation of bright energetic polarized proton beams would open a domain of polarization studies with laser driven accelerators, and have potential application to enable effective detection in explorations of quantum chromodynamics.
The propagation of intense laser pulses and the generation of high energy electrons from the underdense plasmas are investigated using two dimensional particle-in-cell simulations. When the ratio of the laser power and a critical power of relativisti c self-focusing is the optimal value, it propagates stably and electrons have maximum energies.
86 - Suo Tang , Naveen Kumar , 2016
Plasma high harmonics generation from an extremely intense short-pulse laser is explored by including the effects of ion motion, electron-ion collisions and radiation reaction force in the plasma dynamics. The laser radiation pressure induces plasma ion motion through the hole-boring effect resulting into the frequency shifting and widening of the harmonic spectra. Classical radiation reaction force slightly mitigates the frequency broadening caused by the ion motion. Based on the results and physical considerations, parameter maps highlighting optimum regions for generating a single intense attosecond pulse and coherent XUV radiations are presented.
Dimensional effects in particle-in-cell (PIC) simulation of target normal sheath acceleration (TNSA) of protons are considered. As the spatial divergence of the laser-accelerated hot sheath electrons and the resulting space-charge electric field on t he target backside depend on the spatial dimension, the maximum energy of the accelerated protons obtained from three-dimensional (3D) simulations is usually much less that from two-dimensional (2D) simulations. By closely examining the TNSA of protons in 2D and 3D PIC simulations, we deduce an empirical ratio between the maximum proton energies obtained from the 2D and 3D simulations. This ratio may be useful for estimating the maximum proton energy in realistic (3D) TNSA from the results of the corresponding 2D simulation. It is also shown that the scaling law also applies to TNSA from structured targets.
We investigate the target normal sheath acceleration of protons in thin aluminum targets irradiated at relativistic intensity by two time-separated ultrashort (35 fs) laser pulses. For identical laser pulses and target thicknesses of 3 and 6 $mu$m, w e observe experimentally that the second pulse boosts the maximum energy and charge of the proton beam produced by the first pulse for time delays below $sim0.6-1$ ps. By using two-dimensional particle-in-cell simulations we examine the variation of the proton energy spectra with respect to the time-delay between the two pulses. We demonstrate that the expansion of the target front surface caused by the first pulse significantly enhances the hot-electron generation by the second pulse arriving after a few hundreds of fs time delay. This enhancement, however, does not suffice to further accelerate the fastest protons driven by the first pulse once three-dimensional quenching effects have set in. This implies a limit to the maximum time delay that leads to proton energy enhancement, which we theoretically determine.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا