Sharp threshold nonlinearity for maximizing the Trudinger-Moser inequalities


الملخص بالإنكليزية

We study existence of maximizer for the Trudinger-Moser inequality with general nonlinearity of the critical growth on $R^2$, as well as on the disk. We derive a very sharp threshold nonlinearity between the existence and the non-existence in each case, in asymptotic expansions with respect to growth and decay of the function. The expansions are explicit, using Aperys constant. We also obtain an asymptotic expansion for the exponential radial Sobolev inequality on $R^2$.

تحميل البحث