ترغب بنشر مسار تعليمي؟ اضغط هنا

Tuning of Magnetic Activity in Spin-Filter Josephson Junctions Towards Spin-Triplet Transport

239   0   0.0 ( 0 )
 نشر من قبل Roberta Caruso
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The study of superconductor-ferromagnet interfaces has generated great interest in the last decades, leading to the observation of spin-aligned triplet supercurrents and 0-pi transitions in Josephson junctions where two superconductors are separated by an itinerant ferromagnet. Recently, spin-filter Josephson junctions with ferromagnetic barriers have shown unique transport properties, when compared to standard metallic ferromagnetic junctions, due to the intrinsically nondissipative nature of the tunneling process. Here we present the first extensive characterization of spin polarized Josephson junctions down to 0.3 K, and the first evidence of an incomplete 0-pi transition in highly spin polarized tunnel ferromagnetic junctions. Experimental data are consistent with a progressive enhancement of the magnetic activity with the increase of the barrier thickness, as neatly captured by the simplest theoretical approach including a nonuniform exchange field. For very long junctions, unconventional magnetic activity of the barrier points to the presence of spin-triplet correlations.



قيم البحث

اقرأ أيضاً

The increased capabilities of coupling more and more materials through functional interfaces are paving the way to a series of exciting experiments and extremely advanced devices. Here we focus on the capability of magnetically inhomogeneous supercon ductor/ferromagnet (S/F) interfaces to generate spin-polarized triplet pairs. We use the power of the Josephson effect for a quantitatively accurate proof of the coexistence and tunability of singlet and triplet transport in ferromagnetic spin filter junctions. We build on previous achievements and find unique correspondence between neat experimental benchmarks in the temperature behavior of the critical current and theoretical modeling based on microscopic calculations. This turns to be a unique opportunity to model disorder and spin-mixing effects in a Josephson junction (JJ) to enlarge the space of parameters, which regulate the phenomenology of the Josephson effect and could be applied to a variety of novel types of JJs.
We study the Andreev bound states in a Josephson junction between a singlet and a triplet superconductors. Because of the mismatch in the spin symmetries of pairing, the energies of the spin up and down quasiparticles are generally different. This re sults in imbalance of spin populations and net spin accumulation at the junction in equilibrium. This effect can be detected using probes of local magnetic field, such as the scanning SQUID, Hall, and Kerr probes. It may help to identify potential triplet pairing in $rm(TMTSF)_2X$, $rm Sr_2RuO_4$, and oxypnictides.
In the past year, several groups have observed evidence for long-range spin-triplet supercurrent in Josephson junctions containing ferromagnetic (F) materials. In our work, the spin-triplet pair correlations are created by non-collinear magnetization s between a central Co/Ru/Co synthetic antiferromagnet (SAF) and two outer thin F layers. Here we present data showing that the spin-triplet supercurrent is enhanced up to 20 times after our samples are subject to a large in-plane magnetizing field. This surprising result can be explained if the Co/Ru/Co SAF undergoes a spin-flop transition, whereby the two Co layer magnetizations end up perpendicular to the magnetizations of the two thin F layers. Direct experimental evidence for the spin-flop transition comes from scanning electron microscopy with polarization analysis and from spin-polarized neutron reflectometry.
Due to the ever increasing power and cooling requirements of large-scale computing and data facilities, there is a worldwide search for low-power alternatives to CMOS. One approach under consideration is superconducting computing based on single-flux -quantum logic. Unfortunately, there is not yet a low-power, high-density superconducting memory technology that is fully compatible with superconducting logic. We are working toward developing cryogenic memory based on Josephson junctions that contain two or more ferromagnetic (F) layers. Such junctions have been demonstrated to be programmable by changing the relative direction of the F layer magnetizations. There are at least two different types of such junctions -- those that carry the innate spin-singlet supercurrent associated with the conventional superconducting electrodes, and those that convert spin-singlet to spin-triplet supercurrent in the middle of the device. In this paper we compare the performance and requirements of the two kinds of junctions. Whereas the spin-singlet junctions need only two ferromagnetic layers to function, the spin-triplet junctions require at least three. In the devices demonstrated to date, the spin-singlet junctions have considerably larger critical current densities than the spin-triplet devices. On the other hand, the spin-triplet devices have less stringent constraints on the thicknesses of the F layers, which might be beneficial in large-scale manufacturing.
130 - Yixing Wang , W P Pratt , Jr 2011
In 2010, several experimental groups obtained compelling evidence for spin-triplet supercurrent in Josephson junctions containing strong ferromagnetic materials. Our own best results were obtained from large-area junctions containing a thick central Co/Ru/Co synthetic antiferromagnet and two thin outer layers made of Ni or PdNi alloy. Because the ferromagnetic layers in our samples are multi-domain, one would expect the sign of the local current-phase relation inside the junctions to vary randomly as a function of lateral position. Here we report measurements of the area dependence of the critical current in several samples, where we find some evidence for those random sign variations. When the samples are magnetized, however, the critical current becomes clearly proportional to the area, indicating that the current-phase relation has the same sign across the entire area of the junctions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا