ﻻ يوجد ملخص باللغة العربية
The magnetic field plays a key role in producing solar flares, so that the investigation on the relationship between the magnetic field properties and flares is significant. In this paper, based on the magnetic field extrapolated from the photospheric vector magnetograms of the active region NOAA 9077 obtained at Huairou Solar Observing Station, the magnetic field parameters including the height of field lines, force-free factor, free magnetic energy and inclination angle were studied with respect to an X-class flare in this region. We found that the magnetic field lines became lower and the ratio of number of closed field lines to those of open field lines increased after the flare. The force-free factor ($alpha$) attained a large value before the flare and then decreased after the flare for the closed field lines, while the open field lines showed the opposite tendency. Free energy reach to maximum before flare, then decrease after flare. The magnetic inclination angles showed opposite change trends after the flare for closed and open field lines. Therefore, we may conclude that non-potential energy released by flare mostly contained in the closed magnetic field lines.
We report a detailed event analysis on the M6.6-class flare in the active region (AR) NOAA 11158 on 2011 February 13. AR 11158, which consisted of two major emerging bipoles, showed prominent activities including one X- and several M-class flares. In
Chromospheric evaporation is observed as Doppler blueshift during solar flares. It plays one of key roles in dynamics and energetics of solar flares, however, its mechanism is still unknown. In this paper we present a detailed analysis of spatially-r
Solar flares are often associated with coronal eruptions, but there are confined ones without eruption, even for some X-class flares. How such large flares occurred and why they are confined are still not well understood. Here we studied a confined X
We have studied the relationship between the solar-wind speed $[V]$ and the coronal magnetic-field properties (a flux expansion factor [$f$] and photospheric magnetic-field strength [$B_{mathrm{S}}$]) at all latitudes using data of interplanetary sci
In this article, we investigate the formation and disruption of a coronal sigmoid from the active region (AR) NOAA 11909 on 07 December 2013, by analyzing multi-wavelength and multi-instrument observations. Our analysis suggests that the formation of