ﻻ يوجد ملخص باللغة العربية
For graphs $G$ and $H$, let $G {displaystylesmash{begin{subarray}{c} hbox{$tinyrm rb$} longrightarrow hbox{$tinyrm p$} end{subarray}}}H$ denote the property that for every proper edge-colouring of $G$ there is a rainbow $H$ in $G$. It is known that, for every graph $H$, an asymptotic upper bound for the threshold function $p^{rm rb}_H=p^{rm rb}_H(n)$ of this property for the random graph $G(n,p)$ is $n^{-1/m^{(2)}(H)}$, where $m^{(2)}(H)$ denotes the so-called maximum $2$-density of $H$. Extending a result of Nenadov, Person, v{S}koric, and Steger [J. Combin. Theory Ser. B 124 (2017),1-38] we prove a matching lower bound for $p^{rm rb}_{K_k}$ for $kgeq 5$. Furthermore, we show that $p^{rm rb}_{K_4} = n^{-7/15}$.
For graphs $G$ and $H$, let $G overset{mathrm{rb}}{{longrightarrow}} H$ denote the property that for every proper edge colouring of $G$ there is a rainbow copy of $H$ in $G$. Extending a result of Nenadov, Person, v{S}kori{c} and Steger [J. Combin. T
We call a $4$-cycle in $K_{n_{1}, n_{2}, n_{3}}$ multipartite, denoted by $C_{4}^{text{multi}}$, if it contains at least one vertex in each part of $K_{n_{1}, n_{2}, n_{3}}$. The Turan number $text{ex}(K_{n_{1},n_{2},n_{3}}, C_{4}^{text{multi}})$ $bi
An edge-colored graph $G$ is called textit{rainbow} if every edge of $G$ receives a different color. Given any host graph $G$, the textit{anti-Ramsey} number of $t$ edge-disjoint rainbow spanning trees in $G$, denoted by $r(G,t)$, is defined as the m
In this paper, we consider a variant of Ramsey numbers which we call complementary Ramsey numbers $bar{R}(m,t,s)$. We first establish their connections to pairs of Ramsey $(s,t)$-graphs. Using the classification of Ramsey $(s,t)$-graphs for small $s,
Analogues of Ramseys Theorem for infinite structures such as the rationals or the Rado graph have been known for some time. In this context, one looks for optimal bounds, called degrees, for the number of colors in an isomorphic substructure rather t