ﻻ يوجد ملخص باللغة العربية
The technological prototype of the CALICE highly granular silicon-tungsten electromagnetic calorimeter (SiW-ECAL) was tested in a beam at DESY in 2017. The setup comprised seven layers of silicon sensors. Each layer comprised four sensors, with each sensor containing an array of 256 $5.5times5.5$ mm$^2$ silicon PIN diodes. The four sensors covered a total area of $18times18$ cm$^2$, and comprised a total of 1024 channels. The readout was split into a trigger line and a charge signal line. Key performance results for signal over noise for the two output lines are presented, together with a study of the uniformity of the detector response. Measurements of the response to electrons for the tungsten loaded version of the detector are also presented.
In this article we describe the commissioning and a first analysis of the the beam test performance of a small prototype of a highly granular silicon tungsten calorimeter. The prototype features detector elements with a channel number similar to that
A highly granular silicon-tungsten electromagnetic calorimeter (SiW-ECAL) is the reference design of the ECAL of the International Large Detector (ILD) concept, one of the two detector concepts for the detector(s) at the future International Linear C
We are developing position sensitive silicon detectors (PSDs) which have an electrode at each of four corners so that incident position of a charged particle can be obtained with signal from the electrodes. It is expected that the position resolution
Calorimeters with silicon detectors have many unique features and are proposed for several world-leading experiments. We discuss the tests of the first three 18x18 cm$^2$ layers segmented into 1024 pixels of the technological prototype of the silicon
The Particle Flow Analysis approach retained for the future ILC detectors requires high granularity and compact particle energy deposition. A Glass Resistive Plate Chamber based Semi-Digital calorimeter can offer both at a low price for the hadronic