ترغب بنشر مسار تعليمي؟ اضغط هنا

Scully-Lamb quantum laser model for parity-time-symmetric whispering-gallery microcavities: Gain saturation effects and non-reciprocity

89   0   0.0 ( 0 )
 نشر من قبل Ievgen Arkhipov
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use a non-Lindbladian master equation of the Scully-Lamb laser model for the analysis of light propagation in a parity-time symmetric photonic system composed of coupled active and passive whispering-gallery microresonators. Performing the semiclassical approximation, we obtain a set of two nonlinear coupled differential equations describing the time evolution of intracavity fields. These coupled equations are able to explain the experimentally-observed light non-reciprocity [Peng {em et al.}, Nature Physics {bf 10}, 394 (2014), Chang {em et al.}, Nature Photonics {bf 8}, 524 (2014)]. We show that this effect arises from the interplay between gain saturation in the active microcavity, intercavity coupling, and losses in the cavities. Additionally, using this approach, we study the effect of the gain saturation on exceptional points, i.e., exotic degeneracies in non-Hermitian systems. Namely, we demonstrate that the inclusion of gain saturation leads to a modification of the exceptional points in the presence of intense intracavity fields. The Scully-Lamb master equation for systems of coupled optical structures, as proposed and applied here, constitutes a promising tool for the study of quantum optical effects in coupled systems with losses, gain, and gain saturation.



قيم البحث

اقرأ أيضاً

Optical systems combining balanced loss and gain profiles provide a unique platform to implement classical analogues of quantum systems described by non-Hermitian parity-time- (PT-) symmetric Hamiltonians and to originate new synthetic materials with novel properties. To date, experimental works on PT-symmetric optical systems have been limited to waveguides in which resonances do not play a role. Here we report the first demonstration of PT-symmetry breaking in optical resonator systems by using two directly coupled on-chip optical whispering-gallery-mode (WGM) microtoroid silica resonators. Gain in one of the resonators is provided by optically pumping Erbium (Er3+) ions embedded in the silica matrix; the other resonator exhibits passive loss. The coupling strength between the resonators is adjusted by using nanopositioning stages to tune their distance. We have observed reciprocal behavior of the PT-symmetric system in the linear regime, as well as a transition to nonreciprocity in the PT symmetry-breaking phase transition due to the significant enhancement of nonlinearity in the broken-symmetry phase. Our results represent a significant advance towards a new generation of synthetic optical systems enabling on-chip manipulation and control of light propagation.
119 - T. Tian , Zhihai Wang , 2019
We theoretically propose a scheme to realize rotation sensing based on two coupled whispering-gallery-mode resonators with loss and gain. We consider that the active resonator with gain is rotated while the passive one with loss is stationary. The ro tation will induce Sagnac effect and we show that the eigenfrequencies of the supermodes are sensitive to the Sagnac-Fizeau shift. Therefore, we can measure the average photon number in the steady state or the fluctuation spectrum of the output fields to detect the angular velocity of the rotation. We hope that our investigation will be useful in the design of quantum gyroscope based on spinning resonators.
We theoretically study the properties of highly prolate shaped dielectric microresonators. Such resonators sustain whispering gallery modes that exhibit two spatially well separated regions with enhanced field strength. The field per photon on the re sonator surface is significantly higher than e.g. for equatorial whispering gallery modes in microsphere resonators with a comparable mode volume. At the same time, the frequency spacing of these modes is much more favorable, so that a tuning range of several free spectral ranges should be attainable. We discuss the possible application of such resonators for cavity quantum electrodynamics experiments with neutral atoms and reveal distinct advantages with respect to existing concepts.
Non-Hermitian Hamiltonians play an important role in many branches of physics, from quantum mechanics to acoustics. In particular, the realization of PT, and more recently -- anti-PT symmetries in optical systems has proved to be of great value from both the fundamental as well as the practical perspectives. Here, we study theoretically and demonstrate experimentally a novel anyonic-PT symmetry in a coupled lasers system. This is achieved using complex coupling -- of mixed dispersive and dissipative nature, which allows unprecedented control on the location in parameter space where the symmetry and symmetry-breaking occur. Moreover, our method allows us to realize the more familiar special cases of PT and anti-PT symmetries using the same physical system. In a more general perspective, we present and experimentally validate a new relation between laser synchronization and the symmetry of the underlying non-Hermitian Hamiltonian.
Recently optical whispering-gallery-mode resonators (WGMRs) have emerged as promising platforms to achieve label-free detection of nanoscale objects and to reach single molecule sensitivity. The ultimate detection performance of WGMRs are limited by energy dissipation in the material they are fabricated from. Up to date, to improve detection limit, either rare-earth ions are doped into the WGMR to compensate losses or plasmonic resonances are exploited for their superior field confinement. Here, we demonstrate, for the first time, enhanced detection of single-nanoparticle induced mode-splitting in a silica WGMR via Raman-gain assisted loss-compensation and WGM Raman lasing. Notably, we detected and counted individual dielectric nanoparticles down to a record low radius of 10 nm by monitoring a beatnote signal generated when split Raman lasing lines are heterodyne-mixed at a photodetector. This dopant-free scheme retains the inherited biocompatibility of silica, and could find widespread use for sensing in biological media. It also opens the possibility of using intrinsic Raman or parametric gain in other systems, where dissipation hinders the progress of the field and limits applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا