ﻻ يوجد ملخص باللغة العربية
We propose a setup enabling electron energy loss spectroscopy to determine the density of the electrons accumulated by an electro-positive dielectric in contact with a plasma. It is based on a two-layer structure inserted into a recess of the wall. Consisting of a plasma-facing film made out of the dielectric of interest and a substrate layer the structure is designed to confine the plasma-induced surplus electrons to the region of the film. The charge fluctuations they give rise to can then be read out from the backside of the substrate by near specular electron reflection. To obtain in this scattering geometry a strong charge-sensitive reflection maximum due to the surplus electrons the film has to be most probably pre-n-doped and sufficiently thin with the mechanical stability maintained by the substrate. We demonstrate the feasibility of the proposal by calculating the loss spectrum for an sapphire film on top of a CaO layer. We find a reflection maximum strongly shifting with the density of the surplus electrons and suggest to use it for its diagnostics.
We propose to measure the surface charge accumulating at the interface between a plasma and a dielectric by infrared spectroscopy using the dielectric as a multi-internal reflection element. The surplus charge leads to an attenuation of the transmitt
In the quest for dynamic multimodal probing of a materials structure and functionality, it is critical to be able to quantify the chemical state on the atomic and nanoscale using element specific electronic and structurally sensitive tools such as el
There has been much interest in the blowout regime of plasma wakefield acceleration (PWFA), which features ultra-high fields and nonlinear plasma motion. Using an exact analysis, we examine here a fundamental limit of nonlinear PWFA excitation, by an
Exploiting the information provided by electron energy-loss spectroscopy (EELS) requires reliable access to the low-loss region where the zero-loss peak (ZLP) often overwhelms the contributions associated to inelastic scatterings off the specimen. He
We show that the charge accumulated by a dielectric plasma-facing solid can be measured by infrared spectroscopy. The approach utilizes a stack of materials supporting a surface plasmon resonance in the infrared. For frequencies near the Berreman res