ترغب بنشر مسار تعليمي؟ اضغط هنا

Convection-Aided Explosions in One-Dimensional Core-Collapse Supernova Simulations I: Technique and Validation

121   0   0.0 ( 0 )
 نشر من قبل Quintin Mabanta
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Most one-dimensional core-collapse simulations fail to explode, yet multi-dimensional simulations often explode. A dominant multi-dimensional effect aiding explosion is neutrino-driven convection. We incorporate a convection model in approximate one-dimensional core-collapse supernova (CCSN) simulations. This is the 1D+ method. This convection model lowers the neutrino luminosity required for explosion by 30%, similar to the reduction observed in multi-dimensional simulations. The model is based upon the global turbulence model of Mabanta & Murphy (2018) and models the mean-field turbulent flow of neutrino-driven convection. In this preliminary investigation, we use simple neutrino heating and cooling algorithms to compare the critical condition in the 1D+ simulations with the critical condition observed in two-dimensional simulations. Qualitatively, the critical conditions in the 1D+ and the two-dimensional simulations are similar. The assumptions in the convection model affect the radial profiles of density, entropy, and temperature, and comparisons with the profiles of three dimensional simulations will help to calibrate these assumptions. These 1D+ simulations are consistent with the profiles and explosion conditions of equivalent two-dimensional CCSN simulations but are ~100 times faster, and the 1D+ prescription has the potential to be ~100,000 faster than three-dimensional CCSN simulations. The 1D+ technique will be ideally suited to test the explodability of thousands of progenitor models.



قيم البحث

اقرأ أيضاً

This paper presents the first systematic study of proto-neutron star (PNS) convection in three dimensions (3D) based on our latest numerical Fornax models of core-collapse supernova (CCSN). We confirm that PNS convection commonly occurs, and then qua ntify the basic physical characteristics of the convection. By virtue of the large number of long-term models, the diversity of PNS convective behavior emerges. We find that the vigor of PNS convection is not correlated with CCSN dynamics at large radii, but rather with the mass of PNS $-$ heavier masses are associated with stronger PNS convection. We find that PNS convection boosts the luminosities of $ u_{mu}$, $ u_{tau}$, $bar{ u}_{mu}$, and $bar{ u}_{tau}$ neutrinos, while the impact on other species is complex due to a competition of factors. Finally, we assess the consequent impact on CCSN dynamics and the potential for PNS convection to generate pulsar magnetic fields.
An important result in core-collapse supernova (CCSN) theory is that spherically-symmetric, one-dimensional simulations routinely fail to explode, yet multi-dimensional simulations often explode. Numerical investigations suggest that turbulence eases the condition for explosion, but how is not fully understood. We develop a turbulence model for neutrino-driven convection, and show that this turbulence model reduces the condition for explosions by about 30%, in concordance with multi-dimensional simulations. In addition, we identify which turbulent terms enable explosions. Contrary to prior suggestions, turbulent ram pressure is not the dominant factor in reducing the condition for explosion. Instead, there are many contributing factors, ram pressure being only one of them, but the dominant factor is turbulent dissipation (TD). Primarily, TD provides extra heating, adding significant thermal pressure, and reducing the condition for explosion. The source of this TD power is turbulent kinetic energy, which ultimately derives its energy from the higher potential of an unstable convective profile. Investigating a turbulence model in conjunction with an explosion condition enables insight that is difficult to glean from merely analyzing complex multi-dimensional simulations. An explosion condition presents a clear diagnostic to explain why stars explode, and the turbulence model allows us to explore how turbulence enables explosion. Though we find that turbulent dissipation is a significant contributor to successful supernova explosions, it is important to note that this work is to some extent qualitative. Therefore, we suggest ways to further verify and validate our predictions with multi-dimensional simulations.
How do massive stars explode? Progress toward the answer is driven by increases in compute power. Petascale supercomputers are enabling detailed three-dimensional simulations of core-collapse supernovae. These are elucidating the role of fluid instab ilities, turbulence, and magnetic field amplification in supernova engines.
We present multi-dimensional core-collapse supernova simulations using the Isotropic Diffusion Source Approximation (IDSA) for the neutrino transport and a modified potential for general relativity in two different supernova codes: FLASH and ELEPHANT . Due to the complexity of the core-collapse supernova explosion mechanism, simulations require not only high-performance computers and the exploitation of GPUs, but also sophisticated approximations to capture the essential microphysics. We demonstrate that the IDSA is an elegant and efficient neutrino radiation transfer scheme, which is portable to multiple hydrodynamics codes and fast enough to investigate long-term evolutions in two and three dimensions. Simulations with a 40 solar mass progenitor are presented in both FLASH (1D and 2D) and ELEPHANT (3D) as an extreme test condition. It is found that the black hole formation time is delayed in multiple dimensions and we argue that the strong standing accretion shock instability before black hole formation will lead to strong gravitational waves.
We have conducted nineteen state-of-the-art 3D core-collapse supernova simulations spanning a broad range of progenitor masses. This is the largest collection of sophisticated 3D supernova simulations ever performed. We have found that while the majo rity of these models explode, not all do, and that even models in the middle of the available progenitor mass range may be less explodable. This does not mean that those models for which we did not witness explosion would not explode in Nature, but that they are less prone to explosion than others. One consequence is that the compactness measure is not a metric for explodability. We find that lower-mass massive star progenitors likely experience lower-energy explosions, while the higher-mass massive stars likely experience higher-energy explosions. Moreover, most 3D explosions have a dominant dipole morphology, have a pinched, wasp-waist structure, and experience simultaneous accretion and explosion. We reproduce the general range of residual neutron-star masses inferred for the galactic neutron-star population. The most massive progenitor models, however, in particular vis `a vis explosion energy, need to be continued for longer physical times to asymptote to their final states. We find that while the majority of the inner ejecta have Y$_e = 0.5$, there is a substantial proton-rich tail. This result has important implications for the nucleosynthetic yields as a function of progenitor. Finally, we find that the non-exploding models eventually evolve into compact inner configurations that experience a quasi-periodic spiral SASI mode. We otherwise see little evidence of the SASI in the exploding models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا