ﻻ يوجد ملخص باللغة العربية
To explore the structure of the QCD phase diagram in high baryon density domain, several high-energy nuclear collision experiments in a wide range of beam energies are currently performed or planned using many accelerator facilities. In these experiments search for a first-order phase transition and the QCD critical point is one of the most important topics. To find the signature of the phase transition, experimental data should be compared to appropriate dynamical models which quantitatively describe the process of the collisions. In this study we develop a new dynamical model on the basis of the non-equilibrium hadronic transport model JAM and 3+1D hydrodynamics. We show that the new model reproduce well the experimental beam-energy dependence of hadron yields and particle ratio by the partial thermalization of the system in our core-corona approach.
We develop a new dynamical model for high energy heavy-ion collisions in the beam energy region of the highest net-baryon densities on the basis of non-equilibrium microscopic transport model JAM and macroscopic 3+1D hydrodynamics by utilizing a dyna
This is a review of the theoretical background, experimental techniques, and phenomenology of what is called the Glauber Model in relativistic heavy ion physics. This model is used to calculate geometric quantities, which are typically expressed as i
We present theoretical approaches to high energy nuclear collisions in detail putting a special emphasis on technical aspects of numerical simulations. Models include relativistic hydrodynamics, Monte-Carlo implementation of k_T-factorization formula
We review integrated dynamical approaches to describe heavy ion reaction as a whole at ultrarelativistic energies. Since final observables result from all the history of the reaction, it is important to describe all the stages of the reaction to obta
In this paper, we give an account of the peripheral-tube model, which has been developed to give an intuitive and dynamical description of the so-called ridge effect in two-particle correlations in high-energy nuclear collisions. Starting from a real