ﻻ يوجد ملخص باللغة العربية
We put forward a deterministic dissipative protocol to prepare phonon Fock states in nonlinear quantum optomechanical devices. The system is composed of a mechanical mode interacting with an optical field via radiation pressure, whereas the light mode is laser-driven in the resolved blue-sideband regime. To keep our results tractable, we have switched to an interaction picture in a displaced basis, where the effective Hamiltonian exhibits the selective photon-phonon interaction explicitly. After proper parameter adjustment and similarly to cavity-cooling schemes, the quantum evolution allows steering the mechanical degree of freedom to the desired Fock state by directing the optical excitations dynamically towards the target phonon state. The numerical results, including decoherence on both the mechanical and the optical degrees of freedom, show to be quite robust in the good- and bad-cavity regimes with fidelities exceeding $95%$. Lastly, characterization of the achieved nonclassicality, as well as the limitations and feasibility of our protocol under experimental parameters, are also analyzed.
In this letter we present a protocol to engineer interactions confined to subspaces of the Fock space in trapped ions: we show how to engineer upper-, lower-bounded and sliced Jaynes-Cummings (JC) and anti-Jaynes-Cummings (AJC) Hamiltonians. The uppe
Wave mixing is an archetypical phenomenon in bosonic systems. In optomechanics, the bi-directional conversion between electromagnetic waves or photons at optical frequencies and elastic waves or phonons at radio frequencies is building on precisely t
We exploit local quantum estimation theory to investigate the measurement of linear and quadratic coupling strengths in a driven-dissipative optomechanical system. For experimentally realistic values of the model parameters, we find that the linear c
We give a theoretical description of a coherently driven opto-mechanical system with a single added photon. The photon source is modeled as a cavity which initially contains one photon and which is irreversibly coupled to the opto-mechanical system.
Superradiance in an ensemble of atoms leads to the collective enhancement of radiation in a particular mode shared by the atoms in their spontaneous decay from an excited state. The quantum aspects of this phenomenon are highlighted when such collect