ﻻ يوجد ملخص باللغة العربية
Performances of work-to-work conversion are studied for a dissipative nonlinear quantum system with two isochromatic phase-shifted drives. It is shown that for weak Ohmic damping simultaneous maximization of efficiency with finite power yield and low power fluctuations can be achieved. Optimal performances of these three quantities are accompanied by a shortfall of the trade-off bound recently introduced for classical thermal machines. This bound can be undercut down to zero for sufficiently low temperature and weak dissipation, where the non-Markovian quantum nature dominates. Analytic results are given for linear thermodynamics. These general features can persist in the nonlinear driving regime near to a maximum of the power yield and a minimum of the power fluctuations. This broadens the scope to a new operation field beyond linear response.
We study experimentally work fluctuations in a Szilard engine that extracts work from information encoded as the occupancy of an electron level in a semiconductor quantum dot. We show that as the average work extracted per bit of information increase
Landauers principle states that erasure of each bit of information in a system requires at least a unit of energy $k_B T ln 2$ to be dissipated. In return, the blank bit may possibly be utilized to extract usable work of the amount $k_B T ln 2$, in k
We consider a quantum battery that is based on a two-level system coupled with a cavity radiation by means of a two-photon interaction. Various figures of merit, such as stored energy, average charging power, energy fluctuations, and extractable work
In recent years, the study of heat to work conversion has been re-invigorated by nanotechnology. Steady-state devices do this conversion without any macroscopic moving parts, through steady-state flows of microscopic particles such as electrons, phot
The paper discusses the natural emergence of directed motion in a dimer system due to a structural symmetry breaking. A generalised solution is obtained for the transport of such a system which is driven entirely by bath fluctuations. The result show