ﻻ يوجد ملخص باللغة العربية
By repeated trials, one can determine the fairness of a classical coin with a confidence which grows with the number of trials. A quantum coin can be in a superposition of heads and tails and its state is most generally a density matrix. Given a string of qubits representing a series of trials, one can measure them individually and determine the state with a certain confidence. We show that there is an improved strategy which measures the qubits after entangling them, which leads to a greater confidence. This strategy is demonstrated on the simulation facility of IBM quantum computers.
One of the earliest cryptographic applications of quantum information was to create quantum digital cash that could not be counterfeited. In this paper, we describe a new type of quantum money: quantum coins, where all coins of the same denomination
This article introduces quantum computation by analogy with probabilistic computation. A basic description of the quantum search algorithm is given by representing the algorithm as a C program in a novel way.
In a quantum money scheme, a bank can issue money that users cannot counterfeit. Similar to bills of paper money, most quantum money schemes assign a unique serial number to each money state, thus potentially compromising the privacy of the users of
The dimensionality of the internal coin space of discrete-time quantum walks has a strong impact on the complexity and richness of the dynamics of quantum walkers. While two-dimensional coin operators are sufficient to define a certain range of dynam
I propose a new class of interpretations, {it real world interpretations}, of the quantum theory of closed systems. These interpretations postulate a preferred factorization of Hilbert space and preferred projective measurements on one factor. They g