ﻻ يوجد ملخص باللغة العربية
In chains of closely-spaced nanoparticles supporting surface polaritons, near-field electromagnetic coupling leads to collective effects and super-Planckian thermal radiation exchange. Researchers have primarily used two analytical approaches to calculate radiative heat transfer in these systems: fluctuational electrodynamics, which directly incorporates fluctuating thermal currents into Maxwells equations, and a kinetic approach where the dispersion relation provides modes and propagation lengths for the Boltzmann transport equation. Here, we compare results from the two approaches in order to identify regimes in which kinetic theory is valid and to explain differing results in the literature on its validity. Using both methods, we calculate the diffusive radiative thermal conductivity of nanoparticle chains. We show that kinetic theory is valid and matches predictions by fluctuational electrodynamics when the propagation lengths are greater than the particle spacing.
Radiative heat transfer (RHT) and radiative thermal energy (RTE) for 2D nanoparticle ensembles are investigated in the framework of many-body radiative heat transfer theory. We consider nanoparticles made of different materials: metals (Ag), polar di
In dense systems composed of numerous nanoparticles, direct simulations of near-field radiative heat transfer (NFRHT) require considerable computational resources. NFRHT for the simple one-dimensional nanoparticle chains embedded in a non-absorbing h
We study a one-dimensional model of radiative heat transfer for which the effect of the electromag- netic field is only from the scalar potential and thereby ignoring the vector potential contribution. This is a valid assumption when the distances be
The radiative heat transfer between gold nanoparticle layers is presented using the coupled dipole method. Gold nanoparticles are modelled as effective electric and magnetic dipoles interacting via electromagnetic fluctuations. The effect of higher-o
We show that periodic multilayered structures allow to drastically enhance near-field radiative heat transfer between nanoparticles. In particular, when the two nanoparticles are placed on each side of the multilayered structure, at the same interpar