ترغب بنشر مسار تعليمي؟ اضغط هنا

Generating a second-order topological insulator with multiple corner states by periodic driving

145   0   0.0 ( 0 )
 نشر من قبل Anirban Dutta
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the effects of periodic driving on a variant of the Bernevig-Hughes-Zhang (BHZ) model defined on a square lattice. In the absence of driving, the model has both topological and nontopological phases depending on the different parameter values. We also study the anisotropic BHZ model and show that, unlike the isotropic model, it has a nontopological phase which has states localized on only two of the four edges of a finite-sized square. When an appropriate term is added, the edge states get gapped and gapless states appear at the four corners of a square; we have shown that these corner states can be labeled by the eigenvalues of a certain operator. When the system is driven periodically by a sequence of two pulses, multiple corner states may appear depending on the driving frequency and other parameters. We discuss to what extent the system can be characterized by topological invariants such as the Chern number and a diagonal winding number. We have shown that the locations of the jumps in these invariants can be understood in terms of the Floquet operator at both the time-reversal invariant momenta and other momenta which have no special symmetries.



قيم البحث

اقرأ أيضاً

We theoretically investigate a periodically driven semimetal based on a square lattice. The possibility of engineering both Floquet Topological Insulator featuring Floquet edge states and Floquet higher order topological insulating phase, accommodati ng topological corner modes has been demonstrated starting from the semimetal phase, based on Floquet Hamiltonian picture. Topological phase transition takes place in the bulk quasi-energy spectrum with the variation of the drive amplitude where Chern number changes sign from $+1$ to $-1$. This can be attributed to broken time-reversal invariance ($mathcal{T}$) due to circularly polarized light. When the discrete four-fold rotational symmetry ($mathcal{C}_4$) is also broken by adding a Wilson mass term along with broken $mathcal{T}$, higher order topological insulator (HOTI), hosting in-gap modes at all the corners, can be realized. The Floquet quadrupolar moment, calculated with the Floquet states, exhibits a quantized value of $ 0.5$ (modulo 1) identifying the HOTI phase. We also show the emergence of the {it{dressed corner modes}} at quasi-energy $omega/2$ (remnants of zero modes in the quasi-static high frequency limit), where $omega$ is the driving frequency, in the intermediate frequency regime.
Second-order topological semimetals (SOTSMs) is featured with the presence of hinge Fermi arc. How to generate SOTSMs in different systems has attracted much attention. We here propose a scheme to create exotic SOTSMs by periodic driving. It is found that novel Dirac SOTSMs with a widely tunable number of nodes and hinge Fermi arcs, the adjacent nodes with same chirality, and the coexisting nodal points and nodal loops can be generated at ease by the periodic driving. When the time-reversal symmetry is broken, our scheme also permits us to realize an exotic hybrid-order Weyl semimetals with the coexisting hinge and surface Fermi arcs. The multiplicity of the zero- and $pi/T$-mode Weyl points endows our system more colorful 2D sliced topological phases, which can be any combination of normal insulator, Chern insulator, and SOTI, than the static case. Enriching the family of topological semimetals, our scheme supplies a convenient way to artificially synthesize and control exotic topological phases by periodic driving.
Topological photonics provides a new paradigm in studying cavity quantum electrodynamics with robustness to disorder. In this work, we demonstrate the coupling between single quantum dots and the second-order topological corner state. Based on the se cond-order topological corner state, a topological photonic crystal cavity is designed and fabricated into GaAs slabs with quantum dots embedded. The coexistence of corner state and edge state with high quality factor close to 2000 is observed. The enhancement of photoluminescence intensity and emission rate are both observed when the quantum dot is on resonance with the corner state. This result enables the application of topology into cavity quantum electrodynamics, offering an approach to topological devices for quantum information processing.
76 - Xiaoyu Zhu 2018
A two-dimensional second-order topological superconductor exhibits a finite gap in both bulk and edges, with the nontrivial topology manifesting itself through Majorana zero modes localized at the corners, i.e., Majorana corner states. We investigate a time-reversal-invariant topological superconductor in two dimension and demonstrate that an in-plane magnetic field could transform it into a second-order topological superconductor. A detailed analysis reveals that the magnetic field gives rise to mass terms which take distinct values among the edges, and Majorana corner states naturally emerge at the intersection of two adjacent edges with opposite masses. With the rotation of the magnetic field, Majorana corner states localized around the boundary may hop from one corner to a neighboring one and eventually make a full circle around the system when the field rotates by $2pi$. In the end we briefly discuss physical realizations of this system.
The concept of topological phases has been generalized to higher-order topological insulators and superconductors with novel boundary states on corners or hinges. Meanwhile, recent experimental advances in controlling dissipation (such as gain and lo ss) open new possibilities in studying non-Hermitian topological phases. Here, we show that higher-order topological corner states can emerge by simply introducing staggered on-site gain/loss to a Hermitian system in trivial phases. For such a non-Hermitian system, we establish a general bulk-corner correspondence by developing a biorthogonal nested-Wilson-loop and edge-polarization theory, which can be applied to a wide class of non-Hermitian systems with higher-order topological orders. The theory gives rise to topological invariants characterizing the non-Hermitian topological multipole moments (i.e., corner states) that are protected by reflection or chiral symmetry. Such gain/loss induced higher-order topological corner states can be experimentally realized using photons in coupled cavities or cold atoms in optical lattices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا