ﻻ يوجد ملخص باللغة العربية
We study the effects of periodic driving on a variant of the Bernevig-Hughes-Zhang (BHZ) model defined on a square lattice. In the absence of driving, the model has both topological and nontopological phases depending on the different parameter values. We also study the anisotropic BHZ model and show that, unlike the isotropic model, it has a nontopological phase which has states localized on only two of the four edges of a finite-sized square. When an appropriate term is added, the edge states get gapped and gapless states appear at the four corners of a square; we have shown that these corner states can be labeled by the eigenvalues of a certain operator. When the system is driven periodically by a sequence of two pulses, multiple corner states may appear depending on the driving frequency and other parameters. We discuss to what extent the system can be characterized by topological invariants such as the Chern number and a diagonal winding number. We have shown that the locations of the jumps in these invariants can be understood in terms of the Floquet operator at both the time-reversal invariant momenta and other momenta which have no special symmetries.
We theoretically investigate a periodically driven semimetal based on a square lattice. The possibility of engineering both Floquet Topological Insulator featuring Floquet edge states and Floquet higher order topological insulating phase, accommodati
Second-order topological semimetals (SOTSMs) is featured with the presence of hinge Fermi arc. How to generate SOTSMs in different systems has attracted much attention. We here propose a scheme to create exotic SOTSMs by periodic driving. It is found
Topological photonics provides a new paradigm in studying cavity quantum electrodynamics with robustness to disorder. In this work, we demonstrate the coupling between single quantum dots and the second-order topological corner state. Based on the se
A two-dimensional second-order topological superconductor exhibits a finite gap in both bulk and edges, with the nontrivial topology manifesting itself through Majorana zero modes localized at the corners, i.e., Majorana corner states. We investigate
The concept of topological phases has been generalized to higher-order topological insulators and superconductors with novel boundary states on corners or hinges. Meanwhile, recent experimental advances in controlling dissipation (such as gain and lo