ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of kilogauss magnetic fields on the nearby white dwarfs WD1105-340 and WD2150+591

67   0   0.0 ( 0 )
 نشر من قبل John Landstreet
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic fields are present in roughly 10% of white dwarfs. These fields affect the structure and evolution of such stars, and may provide clues about their earlier evolution history. Particularly important for statistical studies is the collection of high-precision spectropolarimetric observations of (1) complete magnitude-limited samples and (2) complete volume-limited samples of white dwarfs. In the course of one of our surveys we have discovered previously unknown kG-level magnetic fields on two nearby white dwarfs, WD1105-340 and WD2150+591. Both stars are brighter than m_V = 15. WD2150+591 is within the 20-pc volume around the Sun, while WD1105-340 is just beyond 25 pc in distance. These discoveries increase the small sample of such weak-field white dwarfs from 21 to 23 stars. Our data appear consistent with roughly dipolar field topology, but it also appears that the surface field structure may be more complex on the older star than on the younger one, a result similar to one found earlier in our study of the weak-field stars WD2034+372 and WD2359-434. This encourages further efforts to uncover a clear link between magnetic morphology and stellar evolution.



قيم البحث

اقرأ أيضاً

We present new results of a survey for weak magnetic fields among DA white dwarfs with inclusion of some brighter hot subdwarf stars. We have detected variable circular polarization in the Halpha line of the hot subdwarf star Feige 34 (SP: sdO). From these data, we estimate that the longitudinal magnetic field of this star varies from -1.1 +/- 3.2 kG to +9.6 +/- 2.6 kG, with a mean of about +5 kG and a period longer than 2 h. In this study, we also confirm the magnetic nature of white dwarf WD1105-048 and present upper limits of kilogauss longitudinal magnetic fields of 5 brightest DA white dwarfs. Our data support recent finding that 25% of white dwarfs have kilogauss magnetic fields. This frequency also confirms results of early estimates obtained using the magnetic field function of white dwarfs.
118 - A. Kawka 2018
A significant fraction of white dwarfs harbour a magnetic field with strengths ranging from a few kG up to about 1000 MG. The fraction appears to depend on the specific class of white dwarfs being investigated and may hold some clues to the origin of their magnetic field. The number of white dwarfs with variable fields as a function of their rotation phase have revealed a large field structure diversity, from a simple offset dipole to structures with spots or multipoles. A review of the current challenges in modelling white dwarf atmospheres in the presence of a magnetic field is presented, and the proposed scenarios for the formation of magnetic fields in white dwarfs are examined.
The magnetic white dwarfs (MWDs) are found either isolated or in interacting binaries. They divide into two groups: a high field group (0.1-1,000MegaGauss) comprising some 13% of all white dwarfs (WDs), and a low field group (B<0.1MG) whose incidence is currently under investigation. The situation may be similar in magnetic binaries because the bright accretion discs in low field systems hide the photosphere of their WDs thus preventing the study of their magnetic fields strength and structure. Considerable research has been devoted to the vexed question on the origin of magnetic fields. One hypothesis is that WD magnetic fields are of fossil origin. The other is that magnetic fields arise from binary interaction, through differential rotation, during common envelope evolution. The recently discovered population of hot, carbon-rich WDs exhibiting an incidence of magnetism of up to about 70% and a variability from a few minutes to a couple of days may support the merging binary hypothesis. Several studies have raised the possibility of the detection of planets around MWDs. Rocky planets may be discovered by the detection of anomalous atmospheric heating of the MWD. Planetary remains have recently revealed themselves in the atmospheres of about 25% of WDs that are polluted by elements such as Ca, Si, and often also Mg, Fe, Na. This pollution has been explained by ongoing accretion of planetary debris. The study of isolated and accreting MWDs is likely to continue to yield exciting discoveries for many years to come.
139 - S. Vennes , A. Kawka , L. Ferrario 2018
Our ongoing spectroscopic survey of high proper motion stars is a rich source of new magnetic white dwarfs. We present a few examples among cool white dwarfs showing the effect of field strength and geometry on the observed optical spectrum. Modellin g of hydrogen and heavy element spectral lines reveals a range of uniform or markedly offset dipole fields in these objects.
The origin of magnetic fields in isolated and binary white dwarfs has been investigated in a series of recent papers. One proposal is that magnetic fields are generated through an alpha-omega dynamo during common envelope evolution. Here we present p opulation synthesis calculations showing that this hypothesis is supported by observations of magnetic binaries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا