ﻻ يوجد ملخص باللغة العربية
Using 3D particle-in-cell (PIC) simulations, we study magnetic reconnection with the x-line being spatially confined in the current direction. We include thick current layers to prevent reconnection at two ends of a thin current sheet that has a thickness on an ion inertial (di) scale. The reconnection rate and outflow speed drop significantly when the extent of the thin current sheet in the current direction is < O(10 di). When the thin current sheet extent is long enough, we find it consists of two distinct regions; an inactive region (on the ion-drifting side) exists adjacent to the active region where reconnection proceeds normally as in a 2D case. The extent of this inactive region is ~ O(10 di), and it suppresses reconnection when the thin current sheet extent is comparable or shorter. The time-scale of current sheet thinning toward fast reconnection can be translated into the spatial-scale of this inactive region; because electron drifts inside the ion diffusion region transport the reconnected magnetic flux, that drives outflows and furthers the current sheet thinning, away from this region. This is a consequence of the Hall effect in 3D. While this inactive region may explain the shortest possible azimuthal extent of dipolarizing flux bundles at Earth, it may also explain the dawn-dusk asymmetry observed at the magnetotail of Mercury, that has a global dawn-dusk extent much shorter than that of Earth.
The orientation and stability of the reconnection x-line in asymmetric geometry is studied using three-dimensional (3D) particle-in-cell simulations. We initiate reconnection at the center of a large simulation domain to minimize the boundary effect.
The kinetic features of secondary magnetic reconnection in a single flux rope undergoing internal kink instability are studied by means of three-dimensional Particle-in-Cell simulations. Several signatures of secondary magnetic reconnection are ident
Contrary to all the 2D models, where the reconnection x-line extent is infinitely long, we study magnetic reconnection in the opposite limit. The scaling of the average reconnection rate and outflow speed are modeled as a function of the x-line exten
Using fully kinetic simulations, we study the suppression of asymmetric reconnection in the limit where the diamagnetic drift speed >> Alfven speed and the magnetic shear angle is moderate. We demonstrate that the slippage between electrons and the m
Electron dynamics surrounding the X-line in magnetopause-type asymmetric reconnection is investigated using a two-dimensional particle-in-cell simulation. We study electron properties of three characteristic regions in the vicinity of the X-line. The