ﻻ يوجد ملخص باللغة العربية
Topology plays a central role in nearly all disciplines of physics, yet its applications have so far been restricted to closed, lossless systems in thermodynamic equilibrium. Given that many physical systems are open and may include gain and loss mechanisms, there is an eminent need to reexamine topology within the context of non-Hermitian theories that describe open, lossy systems. The recent generalization of the Chern number to non-Hermitian Hamiltonians initiated this reexamination; however, there is so far no established connection between a non-Hermitian topological invariant and the quantization of an observable. In this work, we show that no such relationship exists between the Chern number of non-Hermitian bands and the quantization of the Hall conductivity. Using field theoretical techniques, we calculate the longitudinal and Hall conductivities of a non-Hermitian Hamiltonian with a finite Chern number to explicitly demonstrate the physics of a non-quantized Hall conductivity despite an invariable Chern number. These results demonstrate that the Chern number does not provide a physically meaningful classification of non-Hermitian Hamiltonians.
We propose a two-dimensional non-Hermitian Chern insulator with inversion symmetry, which is anisotropic and has staggered gain and loss in both x and y directions. In this system, conventional bulk-boundary correspondence holds. The Chern number is
We investigate the Hall conductance of a two-dimensional Chern insulator coupled to an environment causing gain and loss. Introducing a biorthogonal linear response theory, we show that sufficiently strong gain and loss lead to a characteristic non-a
The development of non-Hermitian topological band theory has led to observations of novel topological phenomena in effectively classical, driven and dissipative systems. However, for open quantum many-body systems, the absence of a ground state prese
Magnetic systems have been extensively studied both from a fundamental physics perspective and as building blocks for a variety of applications. Their topological properties, in particular those of excitations, remain relatively unexplored due to the
Disorder and non-Hermiticity dramatically impact the topological and localization properties of a quantum system, giving rise to intriguing quantum states of matter. The rich interplay of disorder, non-Hermiticity, and topology is epitomized by the r