ﻻ يوجد ملخص باللغة العربية
As an extension of a central limit theorem established by Svante Janson, we prove a Berry-Esseen inequality for a sum of independent and identically distributed random variables conditioned by a sum of independent and identically distributed integer-valued random variables.
We give a nonuniform Berry-Esseen bound for self-normalized martingales, which bridges the gap between the result of Haeusler (1988) and Fan and Shao (2018). The bound coincides with the nonuniform Berry-Esseen bound of Haeusler and Joos (1988) for s
Since the pioneering work of Gerhard Gruss dating back to 1935, Grusss inequality and, more generally, Gruss-type bounds for covariances have fascinated researchers and found numerous applications in areas such as economics, insurance, reliability, a
Researchers are often interested in treatment effects on outcomes that are only defined conditional on a post-treatment event status. For example, in a study of the effect of different cancer treatments on quality of life at end of follow-up, the qua
Let g : $Omega$ = [0, 1] d $rightarrow$ R denote a Lipschitz function that can be evaluated at each point, but at the price of a heavy computational time. Let X stand for a random variable with values in $Omega$ such that one is able to simulate, at
We modify ETAS models by replacing the Pareto-like kernel proposed by Ogata with a Mittag-Leffler type kernel. Provided that the kernel decays as a power law with exponent $beta + 1 in (1,2]$, this replacement has the advantage that the Laplace trans