ترغب بنشر مسار تعليمي؟ اضغط هنا

A conditional Berry-Esseen inequality

260   0   0.0 ( 0 )
 نشر من قبل Agnes Lagnoux
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English
 تأليف Thierry Klein




اسأل ChatGPT حول البحث

As an extension of a central limit theorem established by Svante Janson, we prove a Berry-Esseen inequality for a sum of independent and identically distributed random variables conditioned by a sum of independent and identically distributed integer-valued random variables.



قيم البحث

اقرأ أيضاً

90 - Songqi Wu , Lingjie Kong 2021
We give a nonuniform Berry-Esseen bound for self-normalized martingales, which bridges the gap between the result of Haeusler (1988) and Fan and Shao (2018). The bound coincides with the nonuniform Berry-Esseen bound of Haeusler and Joos (1988) for s tandardized martingales. As a consequence, a Berry-Esseen bound is obtained.
Since the pioneering work of Gerhard Gruss dating back to 1935, Grusss inequality and, more generally, Gruss-type bounds for covariances have fascinated researchers and found numerous applications in areas such as economics, insurance, reliability, a nd, more generally, decision making under uncertainly. Gruss-type bounds for covariances have been established mainly under most general dependence structures, meaning no restrictions on the dependence structure between the two underlying random variables. Recent work in the area has revealed a potential for improving Gruss-type bounds, including the original Grusss bound, assuming dependence structures such as quadrant dependence (QD). In this paper we demonstrate that the relatively little explored notion of `quadrant dependence in expectation (QDE) is ideally suited in the context of bounding covariances, especially those that appear in the aforementioned areas of application. We explore this research avenue in detail, establish general Gruss-type bounds, and illustrate them with newly constructed examples of bivariate distributions, which are not QD but, nevertheless, are QDE. The examples rely on specially devised copulas. We supplement the examples with results concerning general copulas and their convex combinations. In the process of deriving Gruss-type bounds, we also establish new bounds for central moments, whose optimality is demonstrated.
Researchers are often interested in treatment effects on outcomes that are only defined conditional on a post-treatment event status. For example, in a study of the effect of different cancer treatments on quality of life at end of follow-up, the qua lity of life of individuals who die during the study is undefined. In these settings, a naive contrast of outcomes conditional on the post-treatment variable is not an average causal effect, even in a randomized experiment. Therefore the effect in the principal stratum of those who would have the same value of the post-treatment variable regardless of treatment, such as the always survivors in a truncation by death setting, is often advocated for causal inference. While this principal stratum effect is a well defined causal contrast, it is often hard to justify that it is relevant to scientists, patients or policy makers, and it cannot be identified without relying on unfalsifiable assumptions. Here we formulate alternative estimands, the conditional separable effects, that have a natural causal interpretation under assumptions that can be falsified in a randomized experiment. We provide identification results and introduce different estimators, including a doubly robust estimator derived from the nonparametric influence function. As an illustration, we estimate a conditional separable effect of chemotherapies on quality of life in patients with prostate cancer, using data from a randomized clinical trial.
154 - Lucie Bernard 2021
Let g : $Omega$ = [0, 1] d $rightarrow$ R denote a Lipschitz function that can be evaluated at each point, but at the price of a heavy computational time. Let X stand for a random variable with values in $Omega$ such that one is able to simulate, at least approximately, according to the restriction of the law of X to any subset of $Omega$. For example, thanks to Markov chain Monte Carlo techniques, this is always possible when X admits a density that is known up to a normalizing constant. In this context, given a deterministic threshold T such that the failure probability p := P(g(X) > T) may be very low, our goal is to estimate the latter with a minimal number of calls to g. In this aim, building on Cohen et al. [9], we propose a recursive and optimal algorithm that selects on the fly areas of interest and estimate their respective probabilities.
91 - J. Chen , A.G. Hawkes , E. Scalas 2020
We modify ETAS models by replacing the Pareto-like kernel proposed by Ogata with a Mittag-Leffler type kernel. Provided that the kernel decays as a power law with exponent $beta + 1 in (1,2]$, this replacement has the advantage that the Laplace trans form of the Mittag-Leffler function is known explicitly, leading to simpler calculation of relevant quantities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا