ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermal conductivity and coordination number of compressed dust aggregates

58   0   0.0 ( 0 )
 نشر من قبل Sota Arakawa
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding the heat transfer mechanism within dust aggregates is of great importance for many subjects in planetary science. We calculated the coordination number and the thermal conductivity through the solid network of compressed dust aggregates. We found a simple relationship between the coordination number and the filling factor and revealed that the thermal conductivity through the solid network of aggregates is represented by a power-law function of the filling factor and the coordination number.



قيم البحث

اقرأ أيضاً

Comets are thought to have information about the formation process of our solar system. Recently, detailed information about comet 67P/Churyumov-Gerasimenko has been found by a spacecraft mission Rosetta. It is remarkable that its tensile strength wa s estimated. In this paper, we measure and formulate the tensile strength of porous dust aggregates using numerical simulations, motivated by porous dust aggregation model of planetesimal formation. We perform three-dimensional numerical simulations using a monomer interaction model with periodic boundary condition. We stretch out a dust aggregate with a various initial volume filling factor between $10^{-2}$ and 0.5. We find that the tensile stress takes the maximum value at the time when the volume filling factor decreases to about a half of the initial value. The maximum stress is defined to be the tensile strength. We take an average of the results with 10 different initial shapes to smooth out the effects of initial shapes of aggregates. Finally, we numerically obtain the relation between the tensile strength and the initial volume filling factor of dust aggregates. We also use a simple semi-analytical model and successfully reproduce the numerical results, which enables us to apply to a wide parameter range and different materials. The obtained relation is consistent with previous experiments and numerical simulations about silicate dust aggregates. We estimate that the monomer radius of comet 67P has to be about 3.3--220 $mathrm{mu m}$ to reproduce its tensile strength using our model.
Planetesimal formation is one of the most important unsolved problems in planet formation theory. In particular, rocky planetesimal formation is difficult because silicate dust grains are easily broken when they collide. Recently, it has been propose d that they can grow as porous aggregates when their monomer radius is smaller than $sim$ 10 nm, which can also avoid the radial drift toward the central star. However, the stability of a layer composed of such porous silicate dust aggregates has not been investigated. Therefore, we investigate the gravitational instability of this dust layer. To evaluate the disk stability, we calculate Toomres stability parameter $Q$, for which we need to evaluate the equilibrium random velocity of dust aggregates. We calculate the equilibrium random velocity considering gravitational scattering and collisions between dust aggregates, drag by mean flow of gas, stirring by gas turbulence, and gravitational scattering by gas density fluctuation due to turbulence. We derive the condition of the gravitational instability using the disk mass, dust-to-gas ratio, turbulent strength, orbital radius, and dust monomer radius. We find that, for the minimum mass solar nebula model at 1 au, the dust layer becomes gravitationally unstable when the turbulent strength $alphalesssim10^{-5}$. If the dust-to-gas ratio is increased twice, the gravitational instability occurs for $alphalesssim10^{-4}$. We also find that the dust layer is more unstable in disks with larger mass, higher dust-to-gas ratio, and weaker turbulent strength, at larger orbital radius, and with a larger monomer radius.
The experiments presented aim to measure the outcome of collisions between sub-mm sized protoplanetary dust aggregate analogues. We also observed the clusters formed from these aggregates and their collision behaviour. The experiments were performed at the drop tower in Bremen. The protoplanetary dust analogue materials were micrometre-sized monodisperse and polydisperse SiO$_2$ particles prepared into aggregates with sizes between 120~$mu$m and 250~$mu$m. One of the dust samples contained aggregates that were previously compacted through repeated bouncing. During three flights of 9~s of microgravity each, individual collisions between aggregates and the formation of clusters of up to a few millimetres in size were observed. In addition, the collisions of clusters with the experiment cell walls leading to compaction or fragmentation were recorded. We observed collisions amongst dust aggregates and collisions between dust clusters and the cell aluminium walls at speeds ranging from about 0.1 cm/s to 20 cm/s. The velocities at which sticking occurred ranged from 0.18 to 5.0 cm/s for aggregates composed of monodisperse dust, with an average value of 2.1 cm/s for reduced masses ranging from 1.2x10-6 to 1.8x10-3 g with an average value of 2.2x10-4 g. From the restructuring and fragmentation of clusters composed of dust aggregates colliding with the aluminium cell walls, we derived a collision recipe for dust aggregates ($sim$100 $mu$m) following the model of Dominik & Thielens (1997) developed for microscopic particles. We measured a critical rolling energy of 1.8x10-13 J and a critical breaking energy of 3.5x10-13 J for 100 $mu$m-sized non-compacted aggregates.
We introduce a possible disruption mechanism of dust grains in planet formation by their spinning motion. This mechanism has been discussed as rotational disruption for the interstellar dust grains. We theoretically calculate whether porous dust aggr egates can be disrupted by their spinning motion and if it prohibits dust growth in protoplanetary disks. We assume radiative torque and gas-flow torque as driving sources of the spinning motion, assume that dust aggregates reach a steady-state rigid rotation, and compare the obtained tensile stress due to the centrifugal force with their tensile strength. We model the irregularly-shaped dust aggregates by introducing a parameter, $gamma_mathrm{ft}$, that mimics the conversion efficiency from force to torque. As a result, we find that porous dust aggregates are rotationally disrupted by their spinning motion induced by gas flow when their mass is larger than $sim10^8$ g and their volume filling factor is smaller than $sim 0.01$ in our fiducial model, while relatively compact dust aggregates with volume filling factor more than 0.01 do not face this problem. If we assume the dust porosity evolution, we find that dust aggregates whose Stokes number is $sim0.1$ can be rotationally disrupted in their growth and compression process. Our results suggest that the growth of dust aggregates may be halted due to rotational disruption or that other compression mechanisms are needed to avoid it. We also note that dust aggregates are not rotationally disrupted when $gamma_mathrm{ft}leq0.02$ in our fiducial model and the modeling of irregularly-shaped dust aggregates is essential in future work.
We report combined oxygen isotope and mineral-scale trace element analyses of amoeboid olivine aggregates (AOA) and chondrules in ungrouped carbonaceous chondrite Northwest Africa 5958. The trace element geochemistry of olivine in AOA, for the first time measured by LA-ICP-MS, is consistent with a condensation origin although the shallow slope of its rare earth element (REE) pattern has yet to be physically explained. Ferromagnesian silicates in type I chondrules resemble those in other carbonaceous chondrites both geochemically and isotopically, and we find a correlation between 16O enrichment and many incompatible elements in olivine. The variation in incompatible element concentrations may relate to varying amounts of olivine crystallization during a sub-isothermal stage of chondrule-forming events, the duration of which may be anticorrelated with the local solid/gas ratio if this was the determinant of oxygen isotopic ratios as recently proposed. While aqueous alteration has depleted many chondrule mesostases in REE, some chondrules show recognizable subdued group II-like patterns supporting the idea that the immediate precursors of chondrules were nebular condensates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا