ﻻ يوجد ملخص باللغة العربية
We study large deviations of the time-averaged size of stochastic populations described by a continuous-time Markov jump process. When the expected population size $N$ in the steady state is large, the large deviation function (LDF) of the time-averaged population size can be evaluated by using a WKB (after Wentzel, Kramers and Brillouin) method, applied directly to the master equation for the Markov process. For a class of models that we identify, the direct WKB method predicts a giant disparity between the probabilities of observing an unusually small and an unusually large values of the time-averaged population size. The disparity results from a qualitative change in the optimal trajectory of the underlying classical mechanics problem. The direct WKB method also predicts, in the limit of $Nto infty$, a singularity of the LDF, which can be interpreted as a second-order dynamical phase transition. The transition is smoothed at finite $N$, but the giant disparity remains. The smoothing effect is captured by the van-Kampen system size expansion of the exact master equation near the attracting fixed point of the underlying deterministic model. We describe the giant disparity at finite $N$ by developing a different variant of WKB method, which is applied in conjunction with the Donsker-Varadhan large-deviation formalism and involves subleading-order calculations in $1/N$.
Chemical reaction networks offer a natural nonlinear generalisation of linear Markov jump processes on a finite state-space. In this paper, we analyse the dynamical large deviations of such models, starting from their microscopic version, the chemica
The typical values and fluctuations of time-integrated observables of nonequilibrium processes driven in steady states are known to be characterized by large deviation functions, generalizing the entropy and free energy to nonequilibrium systems. The
Since its inception in 1907, the Ehrenfest urn model (EUM) has served as a test bed of key concepts of statistical mechanics. Here we employ this model to study large deviations of a time-additive quantity. We consider two continuous-ti
We show how to calculate the likelihood of dynamical large deviations using evolutionary reinforcement learning. An agent, a stochastic model, propagates a continuous-time Monte Carlo trajectory and receives a reward conditioned upon the values of ce
Many dynamics are random processes with increments given by a quadratic form of a fast Gaussian process. We find that the rate function which describes path large deviations can be computed from the large interval asymptotic of a certain Fredholm det