ﻻ يوجد ملخص باللغة العربية
We theoretically investigate the interlayer dipolar and exchange couplings for an array of metallic magnetic nanowires grown on top of an extended ultrathin yttrium iron garnet film. The calculated interlayer dipolar coupling agrees with observed anticrossings [Chen emph{et al.}, Phys. Rev. Lett. textbf{120}, 217202 (2018)], concluding that the interlayer exchange coupling is suppressed by a spacer layer between the nanowires and film. The Kittel mode in the nanowire array couples chirally to spin waves in the film, even though Damon-Eshbach surface modes do not exist. The chirality is suppressed when the interlayer exchange coupling becomes strong.
Spin waves (SWs), the collective precessional motion of spins in a magnetic system, have been proposed as a promising alternative system with low-power consumption for encoding information. Spin Hall nano-oscillator (SHNO), a new-type spintronic nano
Electrical generation of THz spin waves is theoretically explored in an antiferromangetic nanostrip via the current-induced spin-orbit torque. The analysis based on micromagnetic simulations clearly illustrates that the Neel-vector oscillations excit
Larmors theorem holds for magnetic systems that are invariant under spin rotation. In the presence of spin-orbit coupling this invariance is lost and Larmors theorem is broken: for systems of interacting electrons, this gives rise to a subtle interpl
We experimentally demonstrate tight focusing of a spin wave beam excited in extended nanometer-thick films of Yttrium Iron Garnet by a simple microscopic antenna functioning as a single-slit near-field lens. We show that the focal distance and the mi
Coupling of Josephson-phase and spin-waves is theoretically studied in a superconductor/ferromagnetic insulator/superconductor (S/FI/S) junction. Electromagnetic (EM) field inside the junction and the Josephson current coupled with spin-waves in FI a