ﻻ يوجد ملخص باللغة العربية
The Poison Game is a two-player game played on a graph in which one player can influence which edges the other player is able to traverse. It operationalizes the notion of existence of credulously admissible sets in an argumentation framework or, in graph-theoretic terminology, the existence of non-trivial semi-kernels. We develop a modal logic (poison modal logic, PML) tailored to represent winning positions in such a game, thereby identifying the precise modal reasoning that underlies the notion of credulous admissibility in argumentation. We study model-theoretic and decidability properties of PML, and position it with respect to recently studied logics at the cross-road of modal logic, argumentation, and graph games.
Weakly Aggregative Modal Logic (WAML) is a collection of disguised polyadic modal logics with n-ary modalities whose arguments are all the same. WAML has some interesting applications on epistemic logic and logic of games, so we study some basic mode
Term modal logics (TML) are modal logics with unboundedly many modalities, with quantification over modal indices, so that we can have formulas of the form $exists y. forall x. (Box_x P(x,y) supsetDiamond_y P(y,x))$. Like First order modal logic, TML
Mereology is the study of parts and the relationships that hold between them. We introduce a behavioral approach to mereology, in which systems and their parts are known only by the types of behavior they can exhibit. Our discussion is formally topos
Quantified modal logic provides a natural logical language for reasoning about modal attitudes even while retaining the richness of quantification for referring to predicates over domains. But then most fragments of the logic are undecidable, over ma
Open bisimilarity is defined for open process terms in which free variables may appear. The insight is, in order to characterise open bisimilarity, we move to the setting of intuitionistic modal logics. The intuitionistic modal logic introduced, call