ﻻ يوجد ملخص باللغة العربية
We introduce the task of scene-aware dialog. Our goal is to generate a complete and natural response to a question about a scene, given video and audio of the scene and the history of previous turns in the dialog. To answer successfully, agents must ground concepts from the question in the video while leveraging contextual cues from the dialog history. To benchmark this task, we introduce the Audio Visual Scene-Aware Dialog (AVSD) Dataset. For each of more than 11,000 videos of human actions from the Charades dataset, our dataset contains a dialog about the video, plus a final summary of the video by one of the dialog participants. We train several baseline systems for this task and evaluate the performance of the trained models using both qualitative and quantitative metrics. Our results indicate that models must utilize all the available inputs (video, audio, question, and dialog history) to perform best on this dataset.
The recently proposed audio-visual scene-aware dialog task paves the way to a more data-driven way of learning virtual assistants, smart speakers and car navigation systems. However, very little is known to date about how to effectively extract meani
Scene-aware dialog systems will be able to have conversations with users about the objects and events around them. Progress on such systems can be made by integrating state-of-the-art technologies from multiple research areas including end-to-end dia
Dialog systems need to understand dynamic visual scenes in order to have conversations with users about the objects and events around them. Scene-aware dialog systems for real-world applications could be developed by integrating state-of-the-art tech
Audio-Visual Scene-Aware Dialog (AVSD) is a task to generate responses when chatting about a given video, which is organized as a track of the 8th Dialog System Technology Challenge (DSTC8). To solve the task, we propose a universal multimodal transf
We introduce the task of Visual Dialog, which requires an AI agent to hold a meaningful dialog with humans in natural, conversational language about visual content. Specifically, given an image, a dialog history, and a question about the image, the a