ﻻ يوجد ملخص باللغة العربية
The enrichment history of heavy neutron-capture elements in the Milky Way disc provides fundamental information about the chemical evolution of our Galaxy and about the stellar sources that made those elements. In this work we give new observational data for Sr, the element at the first neutron-shell closure beyond iron, N=50, based on the analysis of the high resolution spectra of 276 Galactic disc stars. The Sr abundance was derived by comparing the observed and synthetic spectra in the region of the SrI 4607 A line, making use of the LTE approximation. NLTE corrections lead to an increase of the abundance estimates obtained under LTE, but for these lines they are minor near solar metallicity. The average correction that we find is 0.151 dex. The star that is mostly affected is HD 6582, with a 0.244 dex correction. The behavior of the Sr abundance as a function of metallicity is discussed within a stellar nucleosynthesis context, in comparison with the abundance of the heavy neutron-capture elements Ba (Z=56) and Eu (Z=63). The comparison of the observational data with the current GCE models confirm that the s-process contributions from Asymptotic Giant Branch stars and from massive stars are the main sources of Sr in the Galactic disc and in the Sun, while different nucleosynthesis sources can explain the high [Sr/Ba] and [Sr/Eu] ratios observed in the early Galaxy.
We present new observational data for the heavy elements molybdenum (Mo, Z = 42) and ruthenium (Ru, Z = 44) in F-, G-, and K-stars belonging to different substructures of the Milky Way. The range of metallicity covered is --1.0 $<$ [Fe/H] $<$ +0.3. T
Our aim is to measure accurate, homogeneous neutron-capture element abundances for the sample of 32 EMP giant stars studied earlier in this series, including 22 stars with [Fe/H] $< -$3.0. Based on high-resolution, high S/N spectra from the ESO VLT/U
We present new accurate abundances for five neutron-capture (Y, La, Ce, Nd, Eu) elements in 73 classical Cepheids located across the Galactic thin disk. Individual abundances are based on high spectral resolution (R ~ 38,000) and high signal-to-noise
We present an extensive analysis of the gas-phase abundances and depletion behaviors of neutron-capture elements in the interstellar medium (ISM). Column densities (or upper limits to the column densities) of Ga II, Ge II, As II, Kr I, Cd II, Sn II,
We identified 8 additional stars as members of the Helmi stream (HStr) in the combined GALAH+ DR3 and $Gaia$ EDR3 catalog. By consistently reevaluating claimed members from the literature, we consolidate a sample of 22 HStr stars with parameters dete