ﻻ يوجد ملخص باللغة العربية
This book describes some computational methods to deal with modular characters of finite groups. It is the theoretical background of the MOC system of the same authors. This system was, and is still used, to compute the modular character tables of sporadic simple groups.
We study the category of representations of $mathfrak{sl}_{m+2n}$ in positive characteristic, whose p-character is a nilpotent whose Jordan type is the two-row partition (m+n,n). In a previous paper with Anno, we used Bezrukavnikov-Mirkovic-Rumynins
This paper is a continuation of [GLT], which develops a level theory and establishes strong character bounds for finite simple groups of linear and unitary type in the case that the centralizer of the element has small order compared to $|G|$ in a lo
We explore the modular representation theory of affine and cyclotomic Yokonuma-Hecke algebras. We provide an equivalence between the category of finite dimensional representations of the affine (resp. cyclotomic) Yokonuma-Hecke algebra and that of an
We establish a Springer correspondence for classical symmetric pairs making use of Fourier transform, a nearby cycle sheaf construction and parabolic induction. In particular, we give an explicit description of character sheaves for classical symmetric pairs.
Let $k$ be an algebraically closed field of characteristic $p > 0$ and let $G$ be a connected reductive algebraic group over $k$. Under some standard hypothesis on $G$, we give a direct approach to the finite $W$-algebra $U(mathfrak g,e)$ associated