ﻻ يوجد ملخص باللغة العربية
Accurate determinations of atmospheric parameters (effective temperature $T_{rm eff}$, surface gravity log $g$ and metallicity [Fe/H]) and distances for large complete samples are of vital importance for various Galactic studies. We have developed a photometric method to select red giant stars and estimate their atmospheric parameters from the photometric colors provided by the SkyMapper Southern Survey (SMSS) data release (DR) 1.1, using stars in common with the LAMOST Galactic spectroscopic surveys as a training set. Distances are estimated with two different approaches: one based on the Gaia DR2 parallaxes for nearby ($d leq 4.5$ kpc) bright stars and another based on the absolute magnitudes predicted by intrinsic color $(g-i)_0$ and photometric metallicity [Fe/H] for distant ($d > 4.5$ kpc) faint stars. Various tests show that our method is capable of delivering atmospheric parameters with a precision of $sim$80 K for $T_{rm eff}$, $sim$0.18 dex for [Fe/H] and $sim$0.35 dex for log $g$, but with a significant systematic error at log $g sim$ 2.3. For distances delivered from $(g-i)_0$ and photometric [Fe/H], our test with the member stars of globular clusters show a median uncertainty of 16 per cent with a negligible zero-point offset. Using this method, atmospheric parameters and distances of nearly one million red giant stars are derived from SMSS DR1.1. Proper motion measurements from Gaia DR2 are available for almost all of the red giant stars, and radial velocity measurements from several large spectroscopic surveys are available for 44 per cent of these. This sample will be accessible online at https://yanghuang0.wixsite.com/yangh/research .
We apply the spectroscopy-based stellar-color regression (SCR) method to perform an accurate photometric re-calibration of the second data release from the SkyMapper Southern Survey (SMSS DR2). From comparison with a sample of over 200,000 dwarf star
If the Galaxy is axisymmetric and in dynamical equilibrium, we expect negligible fluctuations in the residual line-of-sight velocity field. Recent results using the apg{} survey find significant fluctuations in velocity for stars in the midplane ($|z
The Milky Way (MW) bulge is a fundamental Galactic component for understanding the formation and evolution of galaxies, in particular our own. The ESO Public Survey VISTA Variables in the Via Lactea is a deep near-IR survey mapping the Galactic bulge
[Abridged] Ensemble studies of red-giant stars with exquisite asteroseismic, spectroscopic, and astrometric constraints offer a novel opportunity to recast and address long-standing questions concerning the evolution of stars and of the Galaxy. Here,
The new multi-epoch near-infrared VVV survey (VISTA Variables in the Via Lactea) is sampling 562 sq. deg of the Galactic bulge and adjacent regions of the disk. Accurate astrometry established for the region surveyed allows the VVV data to be merged