ﻻ يوجد ملخص باللغة العربية
In wireless OFDM communications systems, pilot tones, due to their publicly known and deterministic characteristic, suffer significant jamming/nulling/spoofing risks. Thus, the convectional channel training protocol using pilot tones could be attacked and paralyzed, which raises the issue of anti-attack channel training authentication (CTA), i.e., verifying the claims of identities of pilot tones and channel estimation samples. In this paper, we consider one-ring scattering scenarios with large-scale uniform linear arrays (ULA) and develop an independence-checking coding (ICC) theory to build a secure and stable CTA protocol, namely, ICC-based CTA (ICC-CTA) protocol. In this protocol, the pilot tones are not only merely randomized and inserted into subcarriers but also encoded as diversified subcarrier activation patterns (SAPs) simultaneously. Those encoded SAPs, though camouflaged by malicious signals, can be identified and decoded into original pilots for high-accuracy channel impulse response (CIR) estimation. The CTA security is first characterized by the error probability of identifying legitimate CIR estimation samples. The CTA instability is formulated as the function of probability of stably estimating CIR against all available diversified SAPs. A realistic tradeoff between the CTA security and instability under the discretely distributed AoA is identified and an optimally stable tradeoff problem is formulated, with the objective of optimizing the code rate to maximize security while maintaining maximum stability for ever. Solving this, we derive the closed-form expression of optimal code rate. Numerical results finally validate the resilience of proposed ICC-CTA protocol.
Due to the publicly-known deterministic character- istic of pilot tones, pilot-aware attack, by jamming, nulling and spoofing pilot tones, can significantly paralyze the uplink channel training in large-scale MISO-OFDM systems. To solve this, we in t
Due to the publicly known and deterministic characteristic of pilot tones, pilot authentication (PA) in multi-user multi-antenna orthogonal frequency-division multiplexing systems is very susceptible to the jamming/nulling/spoofing behaviors. To solv
We present a deep learning based joint source channel coding (JSCC) scheme for wireless image transmission over multipath fading channels with non-linear signal clipping. The proposed encoder and decoder use convolutional neural networks (CNN) and di
Supporting reliable and seamless wireless connectivity for unmanned aerial vehicles (UAVs) has recently become a critical requirement to enable various different use cases of UAVs. Due to their widespread deployment footprint, cellular networks can s
We investigate joint source channel coding (JSCC) for wireless image transmission over multipath fading channels. Inspired by recent works on deep learning based JSCC and model-based learning methods, we combine an autoencoder with orthogonal frequen