ﻻ يوجد ملخص باللغة العربية
Recent nanofabrication technologies have miniaturized optical and mechanical resonators, and have led to a variety of novel optomechanical systems in which optical and mechanical modes are strongly coupled. Here we hybridize an optomechanical resonator with two-level emitters and successfully demonstrate all-optical dynamic control of optical transition in the two-level system by the mechanical oscillation via the cavity quantum-electrodynamics (CQED) effect. Employing copper-doped silicon nanobeam optomechanical resonators, we have observed that the spontaneous emission rate of excitons bound to copper atoms is dynamically modulated by the optically-driven mechanical oscillation within the time scale much shorter than the emission lifetime. The result is explained very well with an analytical model including the dynamic modulation of the Purcell effect and the exciton population. To the best of our knowledge, this is the first demonstration of a dynamic modulation of the spontaneous emission rate by mechanical oscillations. Our achievement will open up a novel field of hybrid optomechanical CQED systems in which three body--optical transitions, optical resonance modes, and mechanical resonance modes--are strongly coupled and will pave the way for novel hybrid quantum systems.
Optomechanical structures are well suited to study photon-phonon interactions, and they also turn out to be potential building blocks for phononic circuits and quantum computing. In phononic circuits, in which information is carried and processed by
Electromagnetically induced transparency has great theoretical and experimental importance in many physics subjects, such as atomic physics, quantum optics, and more recent cavity optomechanics. Optical delay is the most prominent feature of electrom
We investigate a cavity quantum electrodynamic effect, where the alignment of two-dimensional freely rotating optical dipoles is driven by their collective coupling to the cavity field. By exploiting the formal equivalence of a set of rotating dipole
The mechanical properties of light have found widespread use in the manipulation of gas-phase atoms and ions, helping create new states of matter and realize complex quantum interactions. The field of cavity-optomechanics strives to scale this intera
we investigate the transmission of probe laser beam in a coupled-cavity system with polaritons by using standard input-output relation of optical fields, and proposed a theoretical schema for realizing a polariton-based photonic transistor. On accoun