ﻻ يوجد ملخص باللغة العربية
One of the primary objectives of small satellites is to reduce the costs associated with spacecraft development and operations as compared to traditional spacecraft missions. Small satellite missions are generally able to reduce mission planning, hardware, integration, and operational costs; however, small satellite missions struggle with reducing software development and testing costs. This paper presents the case study of the NASA Operational Simulator for Small Satellites (NOS3), a software-only simulation framework that was developed for the Simulation-to-Flight 1 (STF-1) 3U CubeSat mission. The general approach is to develop software simulators for the various hardware flight components (e.g., electrical power system, antenna deployment system, etc.) to create a completely virtual representation of the actual spacecraft system. In addition, NOS3 conveniently packages together a set of open-source software packages including the 42 dynamics simulator, the spacecraft software development framework (core Flight System), and a command and control system (COSMOS). This results in a flexible and easily deployable simulation environment that can be utilized to support software development, testing, training, and mission operations. The NOS3 environment contributed to the success of STF-1 mission in several ways, such as reducing the missions reliance on hardware, increasing available test resources, and supporting training and risk reduction targeted testing of critical software behaviors on the simulated platform. The NOS3 has been released as open-source and is available at www.nos3.org.
Astrophysics spans an enormous range of questions on scales from individual planets to the entire cosmos. To address the richness of 21st century astrophysics requires a corresponding richness of telescopes spanning all bands and all messengers. Much
Application of cubesats in astronomical observations has been getting more and more mature in recent years. Here we report a concept study of a small Compton polarimeter to fly on a cubesat for observing polarization of soft gamma-rays from a black-h
The five classical Uranian moons are possible ocean worlds that exhibit bizarre geologic landforms, hinting at recent surface-interior communication. However, Uranus classical moons, as well as its ring moons and irregular satellites, remain poorly u
The number of small satellites has grown dramatically in the past decade from tens of satellites per year in the mid-2010s to a projection of tens of thousands in orbit by the mid-2020s. This presents both problems and opportunities for observational
The design of a CubeSat telescope for academic research purposes must balance complicated optical and structural designs with cost to maximize performance in extreme environments. Increasing the CubeSat size (eg. 6U to 12U) will increase the potentia