ﻻ يوجد ملخص باللغة العربية
Uncertainties in stellar structure and evolution theory are largest for stars undergoing core convection on the main sequence. A powerful way to calibrate the free parameters used in the theory of stellar interiors is asteroseismology, which provides direct measurements of angular momentum and element transport. We report the detection and classification of new variable O and B stars using high-precision short-cadence (2-min) photometric observations assembled by the Transiting Exoplanet Survey Satellite (TESS). In our sample of 154 O and B stars, we detect a high percentage (90%) of variability. Among these we find 23 multiperiodic pulsators, 6 eclipsing binaries, 21 rotational variables, and 25 stars with stochastic low-frequency variability. Several additional variables overlap between these categories. Our study of O and B stars not only demonstrates the high data quality achieved by TESS for optimal studies of the variability of the most massive stars in the Universe, but also represents the first step towards the selection and composition of a large sample of O and B pulsators with high potential for joint asteroseismic and spectroscopic modeling of their interior structure with unprecedented precision.
We present the results of a systematic search for new rapidly oscillating Ap (roAp) stars using the 2-min cadence data collected by the Transiting Exoplanet Survey Satellite (TESS) during its Cycle 1 observations. We identify 12 new roAp stars. Among
We present the target list of solar-type stars to be observed in short-cadence (2-min) for asteroseismology by the NASA Transiting Exoplanet Survey Satellite (TESS) during its 2-year nominal survey mission. The solar-like Asteroseismic Target List (A
During its two-year prime mission, the Transiting Exoplanet Survey Satellite (TESS) is obtaining full-frame images with a regular 30-minute cadence in a sequence of 26 sectors that cover a combined 85% of the sky. While its primary science case is to
Lack of high-precision long-term continuous photometric data for large samples of stars has prevented the large-scale exploration of pulsational variability in the OB star regime. As a result, the candidates for in-depth asteroseismic modelling remai
Heartbeat stars are eccentric binaries exhibiting characteristic shape of brightness changes during periastron passage caused by tidal distortion of the components. Variable tidal potential can drive tidally excited oscillations (TEOs), which are usu