ﻻ يوجد ملخص باللغة العربية
We present a framework for modelling the star-formation histories of galaxies as a stochastic process. We define this stochastic process through a power spectrum density with a functional form of a broken power-law. Star-formation histories are correlated on short timescales, the strength of this correlation described by a power-law slope, $alpha$, and they decorrelate to resemble white noise over a timescale that is proportional to the timescale of the break in the power spectrum density, $tau_{rm break}$. We use this framework to explore the properties of the stochastic process that, we assume, gives rise to the log-normal scatter about the relationship between star-formation rate and stellar mass, the so-called galaxy star-forming main sequence. Specifically, we show how the measurements of the normalisation and width ($sigma_{rm MS}$) of the main sequence, measured in several passbands that probe different timescales, give a constraint on the parameters of the underlying power spectrum density. We first derive these results analytically for a simplified case where we model observations by averaging over the recent star-formation history. We then run numerical simulations to find results for more realistic observational cases. As a proof of concept, we use observational estimates of the main sequence scatter at $zsim0$ and $M_{star}approx10^{10}~M_{odot}$ measured in H$alpha$, UV+IR and the u-band, and show that combination of these point to $tau_{rm break}=178^{+104}_{-66}$ Myr, when assuming $alpha=2$. This implies that star-formation histories of galaxies lose memory of their previous activity on a timescale of $sim200$ Myr, highlighting the importance of baryonic effects that act over the dynamical timescales of galaxies.
The analytic equilibrium model for galaxy evolution using a mass balance equation is able to reproduce mean observed galaxy scaling relations between stellar mass, halo mass, star formation rate (SFR) and metallicity across the majority of cosmic tim
The scatter of the spatially resolved star formation main sequence (SFMS) is investigated in order to reveal signatures about the processes of galaxy formation and evolution. We have assembled a sample of 355 nearby galaxies with spatially resolved H
Using a sample of 11,478 spaxels in 34 galaxies with molecular gas, star formation and stellar maps taken from the ALMA-MaNGA QUEnching and STar formation (ALMaQUEST) survey, we investigate the parameters that correlate with variations in star format
By using a set of different SFR indicators, including WISE mid-infrared and Halpha emission, we study the slope of the Main Sequence (MS) of local star forming galaxies at stellar masses larger than 10^{10} M_{odot}. The slope of the relation strongl
We argue that the interplay between cosmic rays, the initial mass function, and star formation plays a crucial role in regulating the star-forming main sequence. To explore these phenomena we develop a toy model for galaxy evolution in which star for