ترغب بنشر مسار تعليمي؟ اضغط هنا

Semiconducting nature and thermal transport studies of ZrTe3

124   0   0.0 ( 0 )
 نشر من قبل C S Yadav Dr.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report electrical and thermal transport properties of polycrystalline ZrTe3. The polycrystalline sample shows semiconducting behavior in contrast to the established semi-metallic character of the compound. However the charge density wave (CDW) transition remains intact and its clear signatures are observed in thermal conductivity and Seebeck coefficient, in the wide temperature range 50 - 100 K. The thermal conductivity points to additional scattering from the low frequency phonons (phonon softening) in the vicinity of CDW transition. The transport in the polycrystalline compounds is governed by smaller size polarons in the variable range hopping (VRH) region. However, the increasing disorder in polycrystalline compounds suppresses the CDW transition. The VRH behavior is also observed in the Seebeck coefficient data in the similar temperature range. The Seebeck coefficient suggests a competition between the charge carriers (electrons and hole).



قيم البحث

اقرأ أيضاً

Impurity pinning has long been discussed to have a profound effect on the dynamics of an incommensurate charge density wave (CDW), which would otherwise slide through the lattice without resistance. Here we visualize the impurity pinning evolution of the CDW in ZrTe3 using the variable temperature scanning tunneling microscopy (STM). At low temperatures, we observe a quasi-1D incommensurate CDW modulation moderately correlated to the impurity positions, indicating a weak impurity pinning. As we raise the sample temperature, the CDW modulation gets progressively weakened and distorted, while the correlation with the impurities becomes stronger. Above the CDW transition temperature, short-range modulations persist with the phase almost all pinned by impurities. The evolution from weak to strong impurity pinning through the CDW transition can be understood as a result of losing phase rigidity.
A detailed investigation on the structural and magneto-transport properties of iron intercalated Bi2Se3 single crystals have been presented. The x-ray diffraction and Raman studies confirm the intercalation of Fe in the van der Waals gaps between the layers. The electrical resistivity of the compounds decreases upon intercalation, and Hall resistivity shows the enhancement of the charge carriers upon intercalation. The magnetoresistance shows the non-saturating linear behavior at higher magnetic field and low temperature. Intercalation of Fe increases the onset of the linear magnetoresistance behavior, indicating the reduction in quantum effects. The Kohler scaling employed on the magnetoresistance data indicates single scattering process for all these compounds in the measured temperature range of 3- 300 K.
The trigonal compound EuMg2Bi2 has recently been discussed in terms of its topological band properties. These are intertwined with its magnetic properties. Here detailed studies of the magnetic, thermal, and electronic transport properties of EuMg2Bi 2 single crystals are presented. The Eu{+2} spins-7/2 in EuMg2Bi2 exhibit an antiferromagnetic (AFM) transition at a temperature TN = 6.7 K, as previously reported. By analyzing the anisotropic magnetic susceptibility chi data below TN in terms of molecular-field theory (MFT), the AFM structure is inferred to be a c-axis helix, where the ordered moments in the hexagonal ab-plane layers are aligned ferromagnetically in the ab plane with a turn angle between the moments in adjacent moment planes along the c axis of about 120 deg. The magnetic heat capacity exhibits a lambda anomaly at TN with evidence of dynamic short-range magnetic fluctuations both above and below TN. The high-T limit of the magnetic entropy is close to the theoretical value for spins-7/2. The in-plane electrical resistivity rho(T) data indicate metallic character with a mild and disorder-sensitive upturn below Tmin = 23 K. An anomalous rapid drop in rho(T) on cooling below TN as found in zero field is replaced by a two-step decrease in magnetic fields. The rho(T) measurements also reveal an additional transition below TN in applied fields of unknown origin that is not observed in the other measurements and may be associated with an incommensurate to commensurate AFM transition. The dependence of TN on the c-axis magnetic field Hperp was derived from the field-dependent chi(T), Cp(T), and rho(T) measurements. This TN(Hperp) was found to be consistent with the prediction of MFT for a c-axis helix with S = 7/2 and was used to generate a phase diagram in the Hperp-T plane.
153 - Mingda Li , Gang Chen 2019
Thermal transport is less appreciated in probing quantum materials in comparison to electrical transport. This article aims to show the pivotal role that thermal transport may play in understanding quantum materials: the longitudinal thermal transpor t reflects the itinerant quasiparticles even in an electrical insulating phase, while the transverse thermal transport such as thermal Hall and Nernst effect are tightly linked to nontrivial topology. We discuss three types of examples: quantum spin liquids where thermal transport identifies its existence, superconductors where thermal transport reveals the superconducting gap structure, and topological Weyl semimetals where anomalous Nernst effect is a consequence of nontrivial Berry curvature. We conclude with an outlook of the unique insights thermal transport may offer to probe a much broader category of quantum phenomena.
97 - D. Huo , T. Sakata , T. Sasakawa 2004
We report the electrical resistivity, Hall coefficient, thermoelectric power, specific heat, and thermal conductivity on single crystals of the type-VIII clathrate Ba8Ga16Sn30 grown from Sn-flux. Negative S and R_H over a wide temperature range indic ate that electrons dominate electrical transport properties. Both rho(T) and S(T) show typical behavior of a heavily doped semiconductor. The absolute value of S increases monotonically to 243 uV/K with increasing temperature up to 550 K. The large S may originate from the low carrier concentration n=3.7x10^19 cm^(-3). Hall mobility u_H shows a maximum of 62 cm^2/Vs around 70 K. The analysis of temperature dependence of u_H suggests a crossover of dominant scattering mechanism from ionized impurity to acoustic phonon scattering with increasing temperature. The existence of local vibration modes of Ba atoms in cages composed of Ga and Sn atoms is evidenced by analysis of experimental data of structural refinement and specific heat, which give an Einstein temperature of 50 K and a Debye temperature of 200 K. This local vibration of Ba atoms should be responsible for the low thermal conductivity (1.1 W/m K at 150 K). The potential of type-VIII clathrate compounds for thermoelectric application is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا