ترغب بنشر مسار تعليمي؟ اضغط هنا

Centers of Sylow Subgroups and Automorphisms

114   0   0.0 ( 0 )
 نشر من قبل Robert Guralnick
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Suppose that p is an odd prime and G is a finite group having no normal non-trivial p-subgroup. We show that if a is an automorphism of G of p-power order centralizing a Sylow p-group of G, then a is inner. This answers a conjecture of Gross. An easy corollary is that if p is an odd prime and P is a Sylow p-subgroup of G, then the center of P is contained in the generalized Fitting subgroup of G. We give two proofs both requiring the classification of finite simple groups. For p=2, the result fails but Glauberman in 1968 proved that the square of a is inner. This answered a problem of Kourovka posed in 1999.



قيم البحث

اقرأ أيضاً

191 - Wenbin Guo , Evgeny Vdovin 2017
Denote by $ u_p(G)$ the number of Sylow $p$-subgroups of $G$. It is not difficult to see that $ u_p(H)leq u_p(G)$ for $Hleq G$, however $ u_p(H)$ does not divide $ u_p(G)$ in general. In this paper we reduce the question whether $ u_p(H)$ divides $ u _p(G)$ for every $Hleq G$ to almost simple groups. This result substantially generalizes the previous result by G. Navarro and also provides an alternative proof for the Navarro theorem.
218 - Ashot Minasyan , Denis Osin 2010
Let G be a finitely generated relatively hyperbolic group. We show that if no peripheral subgroup of G is hyperbolic relative to a collection of proper subgroups, then the fixed subgroup of every automorphism of G is relatively quasiconvex. It follow s that the fixed subgroup is itself relatively hyperbolic with respect to a natural family of peripheral subgroups. If all peripheral subgroups of G are slender (respectively, slender and coherent), our result implies that the fixed subgroup of every automorphism of G is finitely generated (respectively, finitely presented). In particular, this happens when G is a limit group, and thus for any automorphism phi of G, Fix(phi) is a limit subgroup of G.
We define and study supercharacters of the classical finite unipotent groups of symplectic and orthogonal types (over any finite field of odd characteristic). We show how supercharacters for groups of those types can be obtained by restricting the su percharacter theory of the finite unitriangular group, and prove that supercharacters are orthogonal and provide a partition of the set of all irreducible characters. We also describe all irreducible characters of maximum degree in terms of the root system, and show how they can be obtained as constituents of particular supercharacters.
82 - Arne Van Antwerpen 2017
In this paper, we show that all Coleman automorphisms of a finite group with self-central minimal non-trivial characteristic subgroup are inner; therefore the normalizer property holds for these groups. Using our methods we show that the holomorph an d wreath product of finite simple groups, among others, have no non-inner Coleman automorphisms. As a further application of our theorems, we provide partial answers to questions raised by M. Hertweck and W. Kimmerle. Furthermore, we characterize the Coleman automorphisms of extensions of a finite nilpotent group by a cyclic $p$-group. Lastly, we note that class-preserving automorphisms of 2-power order of some nilpotent-by-nilpotent groups are inner, extending a result by J. Hai and J. Ge.
We define the superclasses for a classical finite unipotent group $U$ of type $B_{n}(q)$, $C_{n}(q)$, or $D_{n}(q)$, and show that, together with the supercharacters defined in a previous paper, they form a supercharacter theory. In particular, we pr ove that the supercharacters take a constant value on each superclass, and evaluate this value. As a consequence, we obtain a factorization of any superclass as a product of elementary superclasses. In addition, we also define the space of superclass functions, and prove that it is spanned by the supercharacters. As as consequence, we (re)obtain the decomposition of the regular character as an orthogonal linear combination of supercharacters. Finally, we define the supercharacter table of $U$, and prove various orthogonality relations for supercharacters (similar to the well-known orthogonality relations for irreducible characters).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا