ﻻ يوجد ملخص باللغة العربية
Suppose that p is an odd prime and G is a finite group having no normal non-trivial p-subgroup. We show that if a is an automorphism of G of p-power order centralizing a Sylow p-group of G, then a is inner. This answers a conjecture of Gross. An easy corollary is that if p is an odd prime and P is a Sylow p-subgroup of G, then the center of P is contained in the generalized Fitting subgroup of G. We give two proofs both requiring the classification of finite simple groups. For p=2, the result fails but Glauberman in 1968 proved that the square of a is inner. This answered a problem of Kourovka posed in 1999.
Denote by $ u_p(G)$ the number of Sylow $p$-subgroups of $G$. It is not difficult to see that $ u_p(H)leq u_p(G)$ for $Hleq G$, however $ u_p(H)$ does not divide $ u_p(G)$ in general. In this paper we reduce the question whether $ u_p(H)$ divides $ u
Let G be a finitely generated relatively hyperbolic group. We show that if no peripheral subgroup of G is hyperbolic relative to a collection of proper subgroups, then the fixed subgroup of every automorphism of G is relatively quasiconvex. It follow
We define and study supercharacters of the classical finite unipotent groups of symplectic and orthogonal types (over any finite field of odd characteristic). We show how supercharacters for groups of those types can be obtained by restricting the su
In this paper, we show that all Coleman automorphisms of a finite group with self-central minimal non-trivial characteristic subgroup are inner; therefore the normalizer property holds for these groups. Using our methods we show that the holomorph an
We define the superclasses for a classical finite unipotent group $U$ of type $B_{n}(q)$, $C_{n}(q)$, or $D_{n}(q)$, and show that, together with the supercharacters defined in a previous paper, they form a supercharacter theory. In particular, we pr