ﻻ يوجد ملخص باللغة العربية
The paper presents a method for calculation of non-spherical particle T-matrices based on the volume integral equation and the spherical vector wave function basis, and relies on the Generalized Source Method rationale. The developed method appears to be close to the invariant imbedding approach, and the derivations aims at intuitive demonstration of the calculation scheme. In parallel calculation of single columns of T-matrix is considered in detail, and it is shown that this way not only has a promising potential of parallelization but also yields an almost zero power balance for purely dielectric particles.
The computation of light scattering by the superposition T-matrix scheme has been so far restricted to systems made of particles that are either sparsely distributed or of near-spherical shape. In this work, we extend the range of applicability of th
Simple analytical formulae, directly relating the experimental geometry and sample orientation to the measured R(M)XS scattered intensity are very useful to design experiments and analyse data. Such formulae can be obtained by the contraction of an e
For a rational function f we consider the norm of the derivative with respect to the spherical metric and denote by K(f) the supremum of this norm. We give estimates of this quantity K(f) both for an individual function and for sequences of iterates.
Critical overdensity $delta_c$ is a key concept in estimating the number count of halos for different redshift and halo-mass bins, and therefore, it is a powerful tool to compare cosmological models to observations. There are currently two different
In this paper we investigate the $L^p$ boundedness of the lacunary maximal function $ M_{Ha}^{lac} $ associated to the spherical means $ A_r f$ taken over Koranyi spheres on the Heisenberg group. Closely following an approach used by M. Lacey in the