ترغب بنشر مسار تعليمي؟ اضغط هنا

Entanglement swapping with photons generated on-demand by a quantum dot

113   0   0.0 ( 0 )
 نشر من قبل Francesco Basso Basset
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Photonic entanglement swapping, the procedure of entangling photons without any direct interaction, is a fundamental test of quantum mechanics and an essential resource to the realization of quantum networks. Probabilistic sources of non-classical light can be used for entanglement swapping, but quantum communication technologies with device-independent functionalities demand for push-button operation that, in principle, can be implemented using single quantum emitters. This, however, turned out to be an extraordinary challenge due to the stringent requirements on the efficiency and purity of generation of entangled states. Here we tackle this challenge and show that pairs of polarization-entangled photons generated on-demand by a GaAs quantum dot can be used to successfully demonstrate all-photonic entanglement swapping. Moreover, we develop a theoretical model that provides quantitative insight on the critical figures of merit for the performance of the swapping procedure. This work shows that solid-state quantum emitters are mature for quantum networking and indicates a path for scaling up.



قيم البحث

اقرأ أيضاً

Quantum key distribution---exchanging a random secret key relying on a quantum mechanical resource---is the core feature of secure quantum networks. Entanglement-based protocols offer additional layers of security and scale favorably with quantum rep eaters, but the stringent requirements set on the photon source have made their use situational so far. Semiconductor-based quantum emitters are a promising solution in this scenario, ensuring on-demand generation of near-unity-fidelity entangled photons with record-low multi-photon emission, the latter feature countering some of the best eavesdropping attacks. Here we first employ a quantum dot to experimentally demonstrate a modified Ekert quantum key distribution protocol with two quantum channel approaches: both a 250 meter long single mode fiber and in free-space, connecting two buildings within the campus of Sapienza University in Rome. Our field study highlights that quantum-dot entangled-photon sources are ready to go beyond laboratory experiments, thus opening the way to real-life quantum communication.
Transferring entangled states between photon pairs is essential for quantum communication technologies. Semiconductor quantum dots are the most promising candidate for generating polarization-entangled photons deterministically. Recent improvements i n photonic quality and brightness now make them suited for complex quantum optical purposes in practical devices. Here we demonstrate for the first time swapping of entangled states between two pairs of photons emitted by a single quantum dot. A joint Bell measurement heralds the successful generation of the Bell state $Psi^+$ with a fidelity of up to $0.81 pm 0.04$. The states nonlocal nature is confirmed by violating the CHSH-Bell inequality. Our photon source is compatible with atom-based quantum memories, enabling implementation of hybrid quantum repeaters. This experiment thus is a major step forward for semiconductor based quantum communication technologies.
We report entanglement swapping with time-bin entangled photon pairs, each constituted of a 795 nm photon and a 1533 nm photon, that are created via spontaneous parametric down conversion in a non-linear crystal. After projecting the two 1533 nm phot ons onto a Bell state, entanglement between the two 795 nm photons is verified by means of quantum state tomography. As an important feature, the wavelength and bandwidth of the 795 nm photons is compatible with Tm:LiNbO3-based quantum memories, making our experiment an important step towards the realization of a quantum repeater.
83 - Xing Ding , Yu He , Z.-C. Duan 2016
Scalable photonic quantum technologies require on-demand single-photon sources with simultaneously high levels of purity, indistinguishability, and efficiency. These key features, however, have only been demonstrated separately in previous experiment s. Here, by s-shell pulsed resonant excitation of a Purcell-enhanced quantum dot-micropillar system, we deterministically generate resonance fluorescence single photons which, at pi pulse excitation, have an extraction efficiency of 66%, single-photon purity of 99.1%, and photon indistinguishability of 98.5%. Such a single-photon source for the first time combines the features of high efficiency and near-perfect levels of purity and indistinguishabilty, and thus open the way to multi-photon experiments with semiconductor quantum dots.
147 - C.Y. Hu , J.G. Rarity 2010
We present a scheme for efficient state teleportation and entanglement swapping using a single quantum-dot spin in an optical microcavity based on giant circular birefringence. State teleportation or entanglement swapping is heralded by the sequentia l detection of two photons, and is finished after the spin measurement. The spin-cavity unit works as a complete Bell-state analyzer with a built-in spin memory allowing loss-resistant repeater operation. This device can work in both the weak coupling and the strong coupling regime, but high efficiencies and high fidelities are only achievable when the side leakage and cavity loss is low. We assess the feasibility of this device, and show it can be implemented with current technology. We also propose a spin manipulation method using single photons, which could be used to preserve the spin coherence via spin echo techniques.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا