ﻻ يوجد ملخص باللغة العربية
We present the spectral analysis of Chandra/HETGS and NuSTAR observations of the quasar PDS 456 from 2015, and XMM-Newton and NuSTAR archival data from 2013-2014, together with Chandra/HETGS data from 2003. We analyzed these three different epochs in a consistent way, looking for absorption features corresponding to highly ionized blueshifted absorption lines from H-like and He-like ions of iron (and nickel), as well as of other elements (O, Ne, Si, and S) in the soft band. We confirm the presence of a persistent ultra-fast outflow (UFO) with a velocity of v_out=-0.24 - -0.29c, previously detected. We also report the detection of an additional faster component of the UFO with a relativistic velocity of v_out=-0.48c. We implemented photoionization modeling, using XSTAR analytic model warmabs, to characterize the physical properties of the different kinematic components of the ultra-fast outflow and of the partial covering absorber detected in PDS 456. These two relativistic components of the ultra-fast outflow observed in the three epochs analyzed in this paper are powerful enough to impact the host galaxy of PDS 456 through AGN feedback.
Past X-ray observations of the nearby luminous quasar PDS 456 (at $z=0.184$) have revealed a wide angle accretion disk wind (Nardini et al. 2015), with an outflow velocity of $sim-0.25c$, as observed through observations of its blue-shifted iron K-sh
We present an improved model for excess variance spectra describing ultra-fast outflows and successfully apply it to the luminous (L ~ 10^47 erg/s) low-redshift (z = 0.184) quasar PDS 456. The model is able to account well for the broadening of the s
New Swift monitoring observations of the variable, radio-quiet quasar, PDS 456, are presented. A bright X-ray flare was captured in September 2018, the flux increasing by a factor of 4 and with a doubling time-scale of 2 days. From the light crossing
We present joint NuSTAR and XMM-Newton observations of the bright, variable quasar IRAS 13349+2438. This combined dataset shows two clear iron absorption lines at 8 and 9 keV, which are most likely associated with two layers of mildly relativistic bl
High resolution soft X-ray spectroscopy of the prototype accretion disk wind quasar, PDS 456, is presented. Here, the XMM-Newton RGS spectra are analyzed from the large 2013-2014 XMM-Newton campaign, consisting of 5 observations of approximately 100