ﻻ يوجد ملخص باللغة العربية
Dynamic Bloom filters (DBF) were proposed by Guo et. al. in 2010 to tackle the situation where the size of the set to be stored compactly is not known in advance or can change during the course of the application. We propose a novel competitor to DBF with the following important property that DBF is not able to achieve: our structure is able to maintain a bound on the false positive rate for the set membership query across all possible sizes of sets that are stored in it. The new data structure we propose is a dynamic structure that we call Dynamic Partition Bloom filter (DPBF). DPBF is based on our novel concept of a Bloom partition tree which is a tree structure with standard Bloom filters at the leaves. DPBF is superior to standard Bloom filters because it can efficiently handle a large number of unions and intersections of sets of different sizes while controlling the false positive rate. This makes DPBF the first structure to do so to the best of our knowledge. We provide theoretical bounds comparing the false positive probability of DPBF to DBF.
Bloom filters (BF) are widely used for approximate membership queries over a set of elements. BF variants allow removals, sets of unbounded size or querying a sliding window over an unbounded stream. However, for this last case the best current appro
In this paper, we address the problem of sampling from a set and reconstructing a set stored as a Bloom filter. To the best of our knowledge our work is the first to address this question. We introduce a novel hierarchical data structure called Bloom
We present a deterministic dynamic algorithm for maintaining a $(1+epsilon)f$-approximate minimum cost set cover with $O(flog(Cn)/epsilon^2)$ amortized update time, when the input set system is undergoing element insertions and deletions. Here, $n$ d
We present fully dynamic approximation algorithms for the Maximum Independent Set problem on several types of geometric objects: intervals on the real line, arbitrary axis-aligned squares in the plane and axis-aligned $d$-dimensional hypercubes. It
The Bloom filter provides fast approximate set membership while using little memory. Engineers often use these filters to avoid slow operations such as disk or network accesses. As an alternative, a cuckoo filter may need less space than a Bloom filt