ﻻ يوجد ملخص باللغة العربية
We present a novel fitting formula for the halo concentration enhancement in chameleon $f(R)$ gravity relative to General Relativity (GR). The formula is derived by employing a large set of $N$-body simulations of the Hu-Sawicki $f(R)$ model which cover a wide range of model and cosmological parameters, resolutions and simulation box sizes. The complicated dependence of the concentration on halo mass $M$, redshift $z$, and the $f(R)$ and cosmological parameters can be combined into a simpler form that depends only on a rescaled mass $M/10^{p_2}$, with $p_2equiv1.5log_{10}left[|{bar{f}_R(z)}|/(1+z)right]+21.64$ and $bar{f}_R(z)$ the background scalar field at $z$, irrespective of the $f(R)$ model parameter. Our fitting formula can describe the concentration enhancement well for redshifts $zleq3$, nearly 7 orders of magnitude in $M/10^{p_2}$ and five decades in halo mass. This is part of a series of works which aims to provide a general framework for self-consistent and unbiased tests of gravity using present and upcoming galaxy cluster surveys. The fitting formula, which is the first quantitative model for the concentration enhancement due to chameleon type modified gravity, is an important part in this framework and will allow continuous exploration of the parameter space. It can also be used to model other statistics such as the matter power spectrum.
We present a Markov chain Monte Carlo pipeline that can be used for robust and unbiased constraints of $f(R)$ gravity using galaxy cluster number counts. This pipeline makes use of a detailed modelling of the halo mass function in $f(R)$ gravity, whi
We study and model the properties of galaxy clusters in the normal-branch Dvali-Gabadadze-Porrati (nDGP) model of gravity, which is representative of a wide class of theories which exhibit the Vainshtein screening mechanism. Using the first cosmologi
We introduce the idea of {it effective} dark matter halo catalog in $f(R)$ gravity, which is built using the {it effective} density field. Using a suite of high resolution N-body simulations, we find that the dynamical properties of halos, such as th
We present an analysis of galaxy-galaxy weak gravitational lensing (GGL) in chameleon $f(R)$ gravity - a leading candidate of non-standard gravity models. For the analysis we have created mock galaxy catalogues based on dark matter haloes from two se
Modifications of the equations of general relativity at large distances offer one possibility to explain the observed properties of our Universe without invoking a cosmological constant. Numerous proposals for such modified gravity cosmologies exist,