ﻻ يوجد ملخص باللغة العربية
Malware scanners try to protect users from opening malicious documents by statically or dynamically analyzing documents. However, malware developers may apply evasions that conceal the maliciousness of a document. Given the variety of existing evasions, systematically assessing the impact of evasions on malware scanners remains an open challenge. This paper presents a novel methodology for testing the capability of malware scanners to cope with evasions. We apply the methodology to malicious Portable Document Format (PDF) documents and present an in-depth study of how current PDF evasions affect 41 state-of-the-art malware scanners. The study is based on a framework for creating malicious PDF documents that use one or more evasions. Based on such documents, we measure how effective different evasions are at concealing the maliciousness of a document. We find that many static and dynamic scanners can be easily fooled by relatively simple evasions and that the effectiveness of different evasions varies drastically. Our work not only is a call to arms for improving current malware scanners, but by providing a large-scale corpus of malicious PDF documents with evasions, we directly support the development of improved tools to detect document-based malware. Moreover, our methodology paves the way for a quantitative evaluation of evasions in other kinds of malware.
Machine learning (ML) classifiers are vulnerable to adversarial examples. An adversarial example is an input sample which is slightly modified to induce misclassification in an ML classifier. In this work, we investigate white-box and grey-box evasio
Although state-of-the-art PDF malware classifiers can be trained with almost perfect test accuracy (99%) and extremely low false positive rate (under 0.1%), it has been shown that even a simple adversary can evade them. A practically useful malware c
Malware remains a big threat to cyber security, calling for machine learning based malware detection. While promising, such detectors are known to be vulnerable to evasion attacks. Ensemble learning typically facilitates countermeasures, while attack
Malware is a piece of software that was written with the intent of doing harm to data, devices, or people. Since a number of new malware variants can be generated by reusing codes, malware attacks can be easily launched and thus become common in rece
The number of Android malware variants (clones) are on the rise and, to stop this attack of clones we need to develop new methods and techniques for analysing and detecting them. As a first step, we need to study how these malware clones are generate