ﻻ يوجد ملخص باللغة العربية
For iid $d$-dimensional observations $X^{(1)}, X^{(2)}, ldots$ with independent Exponential$(1)$ coordinates, consider the boundary (relative to the closed positive orthant), or frontier, $F_n$ of the closed Pareto record-setting (RS) region [ mbox{RS}_n := {0 leq x in {mathbb R}^d: x otprec X^{(i)} mbox{for all $1 leq i leq n$}} ] at time $n$, where $0 leq x$ means that $0 leq x_j$ for $1 leq j leq d$ and $x prec y$ means that $x_j < y_j$ for $1 leq j leq d$. With $x_+ := sum_{j = 1}^d x_j$, let [ F_n^- := min{x_+: x in F_n} quad mbox{and} quad F_n^+ := max{x_+: x in F_n}, ] and define the width of $F_n$ as [ W_n := F_n^+ - F_n^-. ] We describe typical and almost sure behavior of the processes $F^+$, $F^-$, and $W$. In particular, we show that $F^+_n sim ln n sim F^-_n$ almost surely and that $W_n / ln ln n$ converges in probability to $d - 1$; and for $d geq 2$ we show that, almost surely, the set of limit points of the sequence $W_n / ln ln n$ is the interval $[d - 1, d]$. We also obtain modifications of our results that are important in connection with efficient simulation of Pareto records. Let $T_m$ denote the time that the $m$th record is set. We show that $F^+_{T_m} sim (d! m)^{1/d} sim F^-_{T_m}$ almost surely and that $W_{T_m} / ln m$ converges in probability to $1 - d^{-1}$; and for $d geq 2$ we show that, almost surely, the sequence $W_{T_m} / ln m$ has $liminf$ equal to $1 - d^{-1}$ and $limsup$ equal to $1$.
We present, (partially) analyze, and apply an efficient algorithm for the simulation of multivariate Pareto records. A key role is played by minima of the record-setting region (we call these generators) each time a new record is generated, and two h
We study the trade-off between the Price of Anarchy (PoA) and the Price of Stability (PoS) in mechanism design, in the prototypical problem of unrelated machine scheduling. We give bounds on the space of feasible mechanisms with respect to the above
This paper studies an entropy-based multi-objective Bayesian optimization (MBO). The entropy search is successful approach to Bayesian optimization. However, for MBO, existing entropy-based methods ignore trade-off among objectives or introduce unrel
Designing feasible and effective architectures under diverse computation budgets incurred by different applications/devices is essential for deploying deep models in practice. Existing methods often perform an independent architecture search for each
This paper leverages machine-learned predictions to design competitive algorithms for online conversion problems with the goal of improving the competitive ratio when predictions are accurate (i.e., consistency), while also guaranteeing a worst-case