ترغب بنشر مسار تعليمي؟ اضغط هنا

Internal dynamics and stellar content of nine ultra-diffuse galaxies in the Coma cluster prove their evolutionary link with dwarf early-type galaxies

148   0   0.0 ( 0 )
 نشر من قبل Igor Chilingarian
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ultra-diffuse galaxies (UDGs) are spatially extended, low surface brightness stellar systems with regular elliptical-like morphology found in a wide range of environments. Studies of the internal dynamics and dark matter content of UDGs that would elucidate their formation and evolution have been hampered by their low surface brightnesses. Here we present spatially resolved velocity profiles, stellar velocity dispersions, ages and metallicities for 9 UDGs in the Coma cluster. We use intermediate-resolution spectra obtained with Binospec, the MMTs new high-throughput optical spectrograph. We derive dark matter fractions between 50~% and 90~% within the half-light radius using Jeans dynamical models. Three galaxies exhibit major axis rotation, two others have highly anisotropic stellar orbits, and one shows signs of triaxiality. In the Faber--Jackson and mass--metallicity relations, the 9 UDGs fill the gap between cluster dwarf elliptical (dE) and fainter dwarf spheroidal (dSph) galaxies. Overall, the observed properties of all 9 UDGs can be explained by a combination of internal processes (supernovae feedback) and environmental effects (ram-pressure stripping, interaction with neighbors). These observations suggest that UDGs and dEs are members of the same galaxy population.



قيم البحث

اقرأ أيضاً

Spectroscopic studies of low-luminosity early-type galaxies are essential to understand their origin and evolution but remain challenging because of low surface brightness levels. We describe an observational campaign with the new high-throughput Bin ospec spectrograph at the 6.5-m MMT. It targets a representative sample of dwarf elliptical (dE), ultra-diffuse (UDG), and dwarf spheroidal (dSph) galaxies. We outline our data analysis approach that features (i) a full spectrophotometric fitting to derive internal kinematics and star formation histories of galaxies; (ii) two-dimensional light profile decomposition; (iii) Jeans anisotropic modelling to assess their internal dynamics and dark matter content. We present first results for 9 UDGs in the Coma cluster and a nearby dSph galaxy, which suggest that a combination of internal (supernovae feedback) and environmental (ram-pressure stripping, interactions) processes can explain observed properties of UDGs and, therefore, establish an evolutionary link between UDGs, dSph, and dE galaxies.
Ultra-diffuse galaxies (UDGs) are unusual galaxies with low luminosities, similar to classical dwarf galaxies, but sizes up to $sim!5$ larger than expected for their mass. Some UDGs have large populations of globular clusters (GCs), something unexpec ted in galaxies with such low stellar density and mass. We have carried out a comprehensive study of GCs in both UDGs and classical dwarf galaxies at comparable stellar masses using HST observations of the Coma cluster. We present new imaging for 33 Dragonfly UDGs with the largest effective radii ($>2$ kpc), and additionally include 15 UDGs and 54 classical dwarf galaxies from the HST/ACS Coma Treasury Survey and the literature. Out of a total of 48 UDGs, 27 have statistically significant GC systems, and 11 have candidate nuclear star clusters. The GC specific frequency ($S_N$) varies dramatically, with the mean $S_N$ being higher for UDGs than for classical dwarfs. At constant stellar mass, galaxies with larger sizes (or lower surface brightnesses) have higher $S_N$, with the trend being stronger at higher stellar mass. At lower stellar masses, UDGs tend to have higher $S_N$ when closer to the center of the cluster, i.e., in denser environments. The fraction of UDGs with a nuclear star cluster also depends on environment, varying from $sim!40$% in the cluster core, where it is slightly lower than the nucleation fraction of classical dwarfs, to $lesssim20%$ in the outskirts. Collectively, we observe an unmistakable diversity in the abundance of GCs, and this may point to multiple formation routes.
We present Hubble Space Telescope imaging of two ultra diffuse galaxies (UDGs) with measured stellar velocity dispersions in the Coma cluster. The galaxies, Dragonfly 44 and DFX1, have effective radii of 4.7 kpc and 3.5 kpc and velocity dispersions o f $47^{+8}_{-6}$ km/s and $30^{+7}_{-7}$ km/s, respectively. Both galaxies are associated with a striking number of compact objects, tentatively identified as globular clusters: $N_{rm gc}=74pm 18$ for Dragonfly 44 and $N_{rm gc}=62pm 17$ for DFX1. The number of globular clusters is far higher than expected from the luminosities of the galaxies but is consistent with expectations from the empirical relation between dynamical mass and globular cluster count defined by other galaxies. Combining our data for these two objects with previous HST observations of Coma UDGs we find that UDGs have a factor of $6.9^{+1.0}_{-2.4}$ more globular clusters than other galaxies of the same luminosity, in contrast to a recent study of a similar sample by Amorisco et al. (2017), but consistent with earlier results for individual galaxies. The Harris et al. (2017) relation between globular cluster count and dark matter halo mass implies a median halo mass of $M_{rm halo}sim 1.5times 10^{11},{rm M}_{odot}$ for the sixteen Coma UDGs that have been observed with HST so far, with the largest and brightest having $M_{rm halo}sim 5times 10^{11},{rm M}_{odot}$.
163 - Jin Koda 2015
We report the discovery of 854 ultra diffuse galaxies (UDGs) in the Coma cluster using deep R band images, with partial B, i, and Halpha band coverage, obtained with the Subaru telescope. Many of them (332) are Milky Way-sized with very large effecti ve radii of r_e>1.5kpc. This study was motivated by the recent discovery of 47 UDGs by van-Dokkum et al. (2015); our discovery suggests >1,000 UDGs after accounting for the smaller Subaru field. The new UDGs show a distribution concentrated around the cluster center, strongly suggesting that the great majority are (likely longtime) cluster members. They are a passively evolving population, lying along the red sequence in the CM diagram with no Halpha signature. Star formation was, therefore, quenched in the past. They have exponential light profiles, effective radii re ~ 800 pc- 5 kpc, effective surface brightnesses mu_e(R)=25-28 mag arcsec-2, and stellar masses ~1x10^7 - 5x10^8Msun. There is also a population of nucleated UDGs. Some MW-sized UDGs appear closer to the cluster center than previously reported; their survival in the strong tidal field, despite their large sizes, possibly indicates a large dark matter fraction protecting the diffuse stellar component. The indicated baryon fraction ~<1% is less than the cosmic average, and thus the gas must have been removed from the possibly massive dark halo. The UDG population appears to be elevated in the Coma cluster compared to the field, indicating that the gas removal mechanism is related primarily to the cluster environment.
Understanding the peculiar properties of Ultra Diffuse Galaxies (UDGs) via spectroscopic analysis is a challenging task requiring very deep observations and exquisite data reduction. In this work we perform one of the most complete characterisations of the stellar component of UDGs to date using deep optical spectroscopic data from OSIRIS at GTC. We measure radial and rotation velocities, star formation histories (SFH) and mean population parameters, such as ages and metallicities, for a sample of five UDG candidates in the Coma cluster. From the radial velocities, we confirm the Coma membership of these galaxies. We find that their rotation properties, if detected at all, are compatible with dwarf-like galaxies. The SFHs of the UDG are dominated by old (~ 7 Gyr), metal-poor ([M/H] ~ -1.1) and alpha-enhanced ([Mg/Fe] ~ 0.4) populations followed by a smooth or episodic decline which halted ~ 2 Gyr ago, possibly a sign of cluster-induced quenching. We find no obvious correlation between individual SFH shapes and any UDG morphological properties. The recovered stellar properties for UDGs are similar to those found for DDO44, a local UDG analogue resolved into stars. We conclude that the UDGs in our sample are extended dwarfs whose properties are likely the outcome of both internal processes, such as bursty SFHs and/or high-spin haloes, as well as environmental effects within the Coma cluster.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا