ﻻ يوجد ملخص باللغة العربية
Current benchmarks for optical flow algorithms evaluate the estimation quality by comparing their predicted flow field with the ground truth, and additionally may compare interpolated frames, based on these predictions, with the correct frames from the actual image sequences. For the latter comparisons, objective measures such as mean square errors are applied. However, for applications like image interpolation, the expected users quality of experience cannot be fully deduced from such simple quality measures. Therefore, we conducted a subjective quality assessment study by crowdsourcing for the interpolated images provided in one of the optical flow benchmarks, the Middlebury benchmark. We used paired comparisons with forced choice and reconstructed absolute quality scale values according to Thurstones model using the classical least squares method. The results give rise to a re-ranking of 141 participating algorithms w.r.t. visual quality of interpolated frames mostly based on optical flow estimation. Our re-ranking result shows the necessity of visual quality assessment as another evaluation metric for optical flow and frame interpolation benchmarks.
Image Quality Assessment (IQA) is important for scientific inquiry, especially in medical imaging and machine learning. Potential data quality issues can be exacerbated when human-based workflows use limited views of the data that may obscure digital
We introduce a unified framework for generic video annotation with bounding boxes. Video annotation is a longstanding problem, as it is a tedious and time-consuming process. We tackle two important challenges of video annotation: (1) automatic tempor
Most approaches for video frame interpolation require accurate dense correspondences to synthesize an in-between frame. Therefore, they do not perform well in challenging scenarios with e.g. lighting changes or motion blur. Recent deep learning appro
Video frame interpolation, the synthesis of novel views in time, is an increasingly popular research direction with many new papers further advancing the state of the art. But as each new method comes with a host of variables that affect the interpol
EventNet is a large-scale video corpus and event ontology consisting of 500 events associated with event-specific concepts. In order to improve the quality of the current EventNet, we conduct the following steps and introduce EventNet version 1.1: (1