ﻻ يوجد ملخص باللغة العربية
To produce a fermionic model exhibiting an entanglement entropy volume law, we propose a particular version of nonlocality in which the energy-momentum dispersion relation is effectively randomized at the shortest length scales while preserving translation invariance. In contrast to the ground state of local fermions, exhibiting an entanglement entropy area law with logarithmic corrections, the entropy of nonlocal fermions is extensive, scaling as the volume of the subregion and crossing over to the anomalous fermion area law at scales larger than the locality scale, {alpha}. In the 1-d case, we are able to show that the central charge appearing in the universal entropy expressions for large subregions is simply related to the locality scale. These results are demonstrated by exact diagonalizations of the corresponding discrete lattice fermion models. Within the Ryu-Takayanagi holographic picture, the relation between the central charge and the locality scale suggest a dual spacetime in which the size of the flat UV portion and the radius of AdS in the IR are both proportional to the locality scale, {alpha}.
We analyze a general method for the dissipative preparation and stabilization of volume-law entangled states of fermionic and qubit lattice systems in 1D (and higher dimensions for fermions). Our approach requires minimal resources: nearest-neighbour
The second law of thermodynamics is discussed and reformulated from a quantum information theoretic perspective for open quantum systems using relative entropy. Specifically, the relative entropy of a quantum state with respect to equilibrium states
Entanglement entropy obeys area law scaling for typical physical quantum systems. This may naively be argued to follow from locality of interactions. We show that this is not the case by constructing an explicit simple spin chain Hamiltonian with nea
We consider a class of holographic tensor networks that are efficiently contractible variational ansatze, manifestly (approximate) quantum error correction codes, and can support power-law correlation functions. In the case when the network consists
The projected entangled pair state (PEPS) representation of quantum states on two-dimensional lattices induces an entanglement based hierarchy in state space. We show that the lowest levels of this hierarchy exhibit an enormously rich structure inclu