ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlocal fermions and the entropy volume law

77   0   0.0 ( 0 )
 نشر من قبل Gregory C. Levine
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. C. Levine




اسأل ChatGPT حول البحث

To produce a fermionic model exhibiting an entanglement entropy volume law, we propose a particular version of nonlocality in which the energy-momentum dispersion relation is effectively randomized at the shortest length scales while preserving translation invariance. In contrast to the ground state of local fermions, exhibiting an entanglement entropy area law with logarithmic corrections, the entropy of nonlocal fermions is extensive, scaling as the volume of the subregion and crossing over to the anomalous fermion area law at scales larger than the locality scale, {alpha}. In the 1-d case, we are able to show that the central charge appearing in the universal entropy expressions for large subregions is simply related to the locality scale. These results are demonstrated by exact diagonalizations of the corresponding discrete lattice fermion models. Within the Ryu-Takayanagi holographic picture, the relation between the central charge and the locality scale suggest a dual spacetime in which the size of the flat UV portion and the radius of AdS in the IR are both proportional to the locality scale, {alpha}.



قيم البحث

اقرأ أيضاً

We analyze a general method for the dissipative preparation and stabilization of volume-law entangled states of fermionic and qubit lattice systems in 1D (and higher dimensions for fermions). Our approach requires minimal resources: nearest-neighbour Hamiltonian interactions that obey a suitable chiral symmetry, and the realization of just a single, spatially-localized dissipative pairing interaction. In the case of a qubit array, the dissipative model we study is not integrable and maps to an interacting fermionic problem. Nonetheless, we analytically show the existence of a unique pure entangled steady state (a so-called rainbow state). Our ideas are compatible with a number of experimental platforms, including superconducting circuits and trapped ions.
The second law of thermodynamics is discussed and reformulated from a quantum information theoretic perspective for open quantum systems using relative entropy. Specifically, the relative entropy of a quantum state with respect to equilibrium states is considered and its monotonicity property with respect to an open quantum system evolution is used to obtain second law-like inequalities. We discuss this first for generic quantum systems in contact with a thermal bath and subsequently turn to a formulation suitable for the description of local dynamics in a relativistic quantum field theory. A local version of the second law similar to the one used in relativistic fluid dynamics can be formulated with relative entropy or even relative entanglement entropy in a space-time region bounded by two light cones. We also give an outlook towards isolated quantum field theories and discuss the role of entanglement for relativistic fluid dynamics.
Entanglement entropy obeys area law scaling for typical physical quantum systems. This may naively be argued to follow from locality of interactions. We show that this is not the case by constructing an explicit simple spin chain Hamiltonian with nea rest neighbor interactions that presents an entanglement volume scaling law. This non-translational model is contrived to have couplings that force the accumulation of singlet bonds across the half chain. Our result is complementary to the known relation between non-translational invariant, nearest neighbor interacting Hamiltonians and QMA complete problems.
We consider a class of holographic tensor networks that are efficiently contractible variational ansatze, manifestly (approximate) quantum error correction codes, and can support power-law correlation functions. In the case when the network consists of a single type of tensor that also acts as an erasure correction code, we show that it cannot be both locally contractible and sustain power-law correlation functions. Motivated by this no-go theorem, and the desirability of local contractibility for an efficient variational ansatz, we provide guidelines for constructing networks consisting of multiple types of tensors that can support power-law correlation. We also provide an explicit construction of one such network, which approximates the holographic HaPPY pentagon code in the limit where variational parameters are taken to be small.
The projected entangled pair state (PEPS) representation of quantum states on two-dimensional lattices induces an entanglement based hierarchy in state space. We show that the lowest levels of this hierarchy exhibit an enormously rich structure inclu ding states with critical and topological properties as well as resonating valence bond states. We prove, in particular, that coheren
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا