ﻻ يوجد ملخص باللغة العربية
In this paper we consider a special case of vacuum non-linear electrodynamics with a stress-energy tensor conformal to the Maxwell theory. Distinctive features of this model are: the absence of dimensional parameter for non-linearity description and a very simple form of the dominant energy condition, which can be easily verified in an arbitrary pseudo-riemannian space-time with the consequent constrains on the model parameters. In this paper we analyse some properties of astrophysical compact objects coupled to conformal vacuum non-linear electrodynamics.
We introduce a rigorous and general framework to study systematically self-gravitating elastic materials within general relativity, and apply it to investigate the existence and viability, including radial stability, of spherically symmetric elastic
The aims of this letter are three-fold: First is to show that nonlinear generalizations of electrodynamics support various types of knotted solutions in vacuum. The solutions are universal in the sense that they do not depend on the specific Lagrangi
In this work we explore the possible existence of static, spherically symmetric and stationary, axisymmetric traversable wormholes coupled to nonlinear electrodynamics. Considering static and spherically symmetric (2+1) and (3+1)-dimensional wormhole
In this work, we explore the possibility of evolving (2+1) and (3+1)-dimensional wormhole spacetimes, conformally related to the respective static geometries, within the context of nonlinear electrodynamics. For the (3+1)-dimensional spacetime, it is
We generalize the Tolman-Oppenheimer-Volkoff equations for space-times endowed with a Weyssenhoff like torsion field in the Einstein-Cartan theory. The new set of structure equations clearly show how the presence of torsion affects the geometry of th