ترغب بنشر مسار تعليمي؟ اضغط هنا

The 2014 TeV Gamma-ray Flare of Mrk 501 Seen with H.E.S.S.: Temporal and Spectral Constraints on Lorentz Invariance Violation

120   0   0.0 ( 0 )
 نشر من قبل Matthias Lorentz
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The blazar Mrk 501 (z=0.034) was observed at very-high-energy (VHE, $Egtrsim 100$~GeV) gamma-ray wavelengths during a bright flare on the night of 2014 June 23-24 (MJD 56832) with the H.E.S.S. phase-II array of Cherenkov telescopes. Data taken that night by H.E.S.S. at large zenith angle reveal an exceptional number of gamma-ray photons at multi-TeV energies, with rapid flux variability and an energy coverage extending significantly up to 20 TeV. This data set is used to constrain Lorentz invariance violation (LIV) using two independent channels: a temporal approach considers the possibility of an energy dependence in the arrival time of gamma rays, whereas a spectral approach considers the possibility of modifications to the interaction of VHE gamma rays with extragalactic background light (EBL) photons. The non-detection of energy-dependent time delays and the non-observation of deviations between the measured spectrum and that of a supposed power-law intrinsic spectrum with standard EBL attenuation are used independently to derive strong constraints on the energy scale of LIV ($E_{rm{QG}}$) in the subluminal scenario for linear and quadratic perturbations in the dispersion relation of photons. For the case of linear perturbations, the 95% confidence level limits obtained are $E_{rm{QG},1} > 3.6 times 10^{17} rm{GeV} $ using the temporal approach and $E_{rm{QG},1} > 2.6 times 10^{19} rm{GeV}$ using the spectral approach. For the case of quadratic perturbations, the limits obtained are $E_{rm{QG},2} > 8.5 times 10^{10} rm{GeV} $ using the temporal approach and $E_{rm{QG},2} > 7.8 times 10^{11} rm{ GeV}$ using the spectral approach.



قيم البحث

اقرأ أيضاً

Some Quantum Gravity (QG) theories allow for a violation of Lorentz invariance (LIV), manifesting as a dependence of the velocity of light in vacuum on its energy. If such a dependence exists, then photons of different energies emitted together by a distant source will arrive at the Earth at different times. High-energy (GeV) transient emissions from distant astrophysical sources such as Gamma-ray Bursts (GRBs) and Active Galaxy Nuclei can be used to search for and constrain LIV. The Fermi collaboration has previously analyzed two GRBs in order to put constraints on the dispersion parameter in vacuum, and on the energy scale at which QG effects causing LIV may arise. We used three different methods on four bright GRBs observed by the Fermi-LAT to get more stringent and robust constraints. No delays have been detected and strong limits on the QG energy scale are derived: for linear dispersion we set tight constraints placing the QG energy scale above the Planck mass; a quadratic leading LIV effect is also constrained.
Due to the high energies and long distances to the sources, astrophysical observations provide a unique opportunity to test possible signatures of Lorentz invariance violation (LIV). Superluminal LIV enables the decay of photons at high energy. The H igh Altitude Water Cherenkov (HAWC) Observatory is among the most sensitive gamma-ray instruments currently operating above 10 TeV. HAWC finds evidence of 100 TeV photon emission from at least four astrophysical sources. These observations exclude, for the strongest of the limits set, the LIV energy scale to $2.2times10^{31}$ eV, over 1800 times the Planck energy and an improvement of 1 to 2 orders of magnitude over previous limits.
Due to the high energies and long distances involved, astrophysical observations provide a unique opportunity to test possible signatures of Lorentz Invariance Violation (LIV). Superluminal LIV enables the decay of photons at high energy over relativ ely short distances, giving astrophysical spectra which have a hard cutoff above this energy. The High Altitude Water Cherenkov (HAWC) observatory is the most sensitive currently-operating gamma-ray observatory in the world above 10 TeV. Together with the recent development of an energy-reconstruction algorithm for HAWC using an artificial neural network, HAWC can make detailed measurements of gamma-ray energies above 100 TeV. With these observations, HAWC can limit the LIV energy scale greater than $10^{31}$ eV, over 800 times the Planck energy scale. This limit on LIV is over 60 times more constraining than the best previous value for $rm E_{LIV}^{(1)}$.
180 - Michael Daniel 2015
The assumption of Lorentz invariance is one of the founding principles of Modern Physics and violation of it would have profound implications to our understanding of the universe. For instance, certain theories attempting a unified theory of quantum gravity predict there could be an effective refractive index of the vacuum; the introduction of an energy dependent dispersion to photons could in turn lead to an observable Lorentz invariance violation signature. Whilst a very small effect on local scales the effect will be cumulative, and so for very high energy particles that travel very large distances the difference in arrival times could become sufficiently large to be detectable. This proceedings will look at testing for such Lorentz invariance violation (LIV) signatures in the astronomical lightcurves of gamma-ray emitting objects, with particular notice being given to the prospects for LIV testing with, the next generation observatory, the Cherenkov Telescope Array.
We present results from daily monitoring of gamma rays in the energy range $sim0.5$ to $sim100$ TeV with the first 17 months of data from the High Altitude Water Cherenkov (HAWC) Observatory. Its wide field of view of 2 steradians and duty cycle of $ >95$% are unique features compared to other TeV observatories that allow us to observe every source that transits over HAWC for up to $sim6$ hours each sidereal day. This regular sampling yields unprecedented light curves from unbiased measurements that are independent of seasons or weather conditions. For the Crab Nebula as a reference source we find no variability in the TeV band. Our main focus is the study of the TeV blazars Markarian (Mrk) 421 and Mrk 501. A spectral fit for Mrk 421 yields a power law index $Gamma=2.21 pm0.14_{mathrm{stat}}pm0.20_{mathrm{sys}}$ and an exponential cut-off $E_0=5.4 pm 1.1_{mathrm{stat}}pm 1.0_{mathrm{sys}}$ TeV. For Mrk 501, we find an index $Gamma=1.60pm 0.30_{mathrm{stat}} pm 0.20_{mathrm{sys}}$ and exponential cut-off $E_0=5.7pm 1.6_{mathrm{stat}} pm 1.0_{mathrm{sys}}$ TeV. The light curves for both sources show clear variability and a Bayesian analysis is applied to identify changes between flux states. The highest per-transit fluxes observed from Mrk 421 exceed the Crab Nebula flux by a factor of approximately five. For Mrk 501, several transits show fluxes in excess of three times the Crab Nebula flux. In a comparison to lower energy gamma-ray and X-ray monitoring data with comparable sampling we cannot identify clear counterparts for the most significant flaring features observed by HAWC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا