ﻻ يوجد ملخص باللغة العربية
The reactor antineutrinos are used for the precise measurement of oscillation parameters in the 3-neutrino model, and also used to investigate active-sterile neutrino mixing sensitivity in the 3$+$1 neutrino framework. In the present work, we study the feasibility of sterile neutrino search with the Indian Scintillator Matrix for Reactor Anti-Neutrino (ISMRAN) experimental set-up using electron antineutrinos ($overline{ u}_e$) produced from reactor as a source. The so-called 3$+$1 scenario is considered for active-sterile neutrino mixing, which leads to projected exclusion curves in the sterile neutrino mass and mixing angle plane. The analysis is performed considering both the reactor and detector related parameters. It is found that, the ISMRAN set-up can observe the active-sterile neutrino mixing sensitivity for $sin^{2}2theta_{14} geq$ 0.064 and $Delta m^{2}_{41}$ = 1.0 eV$^2$ at 90$%$ confidence level for an exposure of 1 ton-year by using neutrinos produced from the DHRUVA reactor with thermal power of 100 MW$_{th}$. It is also observed that, there is a significant improvement of the active-sterile neutrino mixing parameter $sin^{2}2theta_{14}$ to $sim$ 0.03 at the same $Delta m^{2}_{41}$ by putting the ISMRAN detector set-up at a distance of 20 m from the compact proto-type fast breeder reactor (PFBR) facility with thermal power of 1250 MW$_{th}$.
In this work, we present an analysis of the sensitivity to the active-sterile neutrino mixing with the Indian Scintillator Matrix for Reactor Anti-Neutrino (ISMRAN) experimental set-up at very short baseline. In this article, we have considered the m
KM3NeT/ORCA is a next-generation neutrino telescope optimised for atmospheric neutrino oscillations studies. In this paper, the sensitivity of ORCA to the presence of a light sterile neutrino in a 3+1 model is presented. After three years of data tak
We study the feasibility of a sterile neutrino search at the China Advanced Research Reactor by measuring $bar { u}_e$ survival probability with a baseline of less than 15 m. Both hydrogen and deuteron have been considered as potential targets. The s
There has been designed an experimental project Neutrino-4 for 100 MW reactor SM-3 to test the hypothesis of the reactor antineutrino anomaly. Advantages of the reactor SM-3 for such an experiment are low background conditions as well as small dimens
We present results from global fits to the available reactor antineutrino dataset, as of Fall 2019, to determine the global preference for a fourth, sterile neutrino. We have separately considered experiments that measure the integrated inverse-beta