ترغب بنشر مسار تعليمي؟ اضغط هنا

Two extensions of the Stone Duality to the category of zero-dimensional Hausdorff spaces

122   0   0.0 ( 0 )
 نشر من قبل Georgi Dimov
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Extending the Stone Duality Theorem, we prove two duality theorems for the category ZHaus of zero-dimensional Hausdorff spaces and continuous maps. Both of them imply easily the Tarski Duality Theorem, as well as two new duality theorems for the category EDTych of extremally disconnected Tychonoff spaces and continuous maps. Also, we describe two categories which are dually equivalent to the category ZComp of zero-dimensional Hausdorff compactifications of zero-dimensional Hausdorff spaces and obtain as a corollary the Dwinger Theorem about zero-dimensional compactifications of a zero-dimensional Hausdorff space.



قيم البحث

اقرأ أيضاً

In [G. Dimov and E. Ivanova-Dimova, Two extensions of the Stone Duality to the category of zero-dimensional Hausdorff spaces, arXiv:1901.04537v4, 1--33], extending the Stone Duality Theorem, we proved two duality theorems for the category ZDHaus of z ero-dimensional Hausdorff spaces and continuous maps. Now we derive from them the extension of the Stone Duality Theorem to the category BooleSp of zero-dimensional locally compact Hausdorff spaces and continuous maps obtained in [G. Dimov, Some generalizations of the Stone Duality Theorem, Publicationes Mathematicae Debrecen, 80 (2012), 255--293], as well as two new duality theorems for the category BooleSp.
Applying a general categorical construction for the extension of dualities, we present a new proof of the Fedorchuk duality between the category of compact Hausdorff spaces with their quasi-open mappings and the category of complete normal contact al gebras with suprema-preserving Boolean homomorphisms which reflect the contact relation.
The notions of a {em 2-precontact space}/ and a {em 2-contact space}/ are introduced. Using them, new representation theorems for precontact and contact algebras are proved. It is shown that there are bijective correspondences between such kinds of a lgebras and such kinds of spaces. As applications of the obtained results, we get new connect
We prove a new duality theorem for the category of precontact algebras which implies the Stone Duality Theorem, its connected version obtained in arXiv:1508.02220v3, 1-44 (to appear in Topology Appl.), the recent duality theorems of Bezhanishvili, G. , Bezhanishvili, N., Sourabh, S., Venema, Y. and Goldblatt, R. and Grice, M, and some new duality theorems for the category of contact algebras and for the category of complete contact algebras.
164 - Sam van Gool 2010
We construct a canonical extension for strong proximity lattices in order to give an algebraic, point-free description of a finitary duality for stably compact spaces. In this setting not only morphisms, but also objects may have distinct pi- and sigma-extensions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا